
Using JAGS in R with the rjags package

Andrew O. Finley

January 25, 2013

1 The ordinary linear regression model

We make use of several libraries in the following example session, including:

� library(coda)

� library(rjags)

Let’s begin by considering the ordinary linear regression model. Here, we are interested in explaining
the variability in outcome or response variable y given a set of predictors or covariates that were observed
together at n sample units. For the i-th observation we can write the model as

yi = x′
iβ + εi, (1)

where the xi = (xi,0, xi,1, . . . , xi,p)
′ is a p × 1 vector (with xi0 set to one, i.e., the intercept), β =

(β0, β1, . . . , βp)
′ is a p × 1 vector of regression coefficients, and error term εi is assumed to follow a Nor-

mal distribution with mean zero and variance σ2, expressed as εi
i.i.d.∼ N(0, σ2). The data model, i.e.,

collecting over the n observations, is expressed as

y = Xβ + ε, (2)

where y = (y1, y2, . . . , yn)′ is a n× 1 vector, X is the n× p matrix with x′
i set as the i-th row, and ε is the

n× 1 error vector distributed N(0, σ2I) with zero vector 0 and n× n idenity matrix I.
It is often helpful, especially when we’re formulating BUGS or JAGS model statements, to write this

model as
yi ∼ N(x′

iβ, σ
2), for i = 1, . . . , n, (3)

or collected over the n observations the multivariate representation is

y ∼ N(Xβ, σ2I). (4)

2 JAGS in a nutshell

Paraphrased from the users manual, JAGS (Just Another Gibbs Sampler) is a program for the analysis of
Bayesian models using Markov chain Monte Carlo (MCMC) which is not wholly unlike OpenBUGS (http:
//www.openbugs.info). JAGS was written with three aims in mind: 1) to have an engine for the BUGS
language that runs on Unix; 2) to be extensible, allowing users to write their own functions, distributions,
and samplers, and; 3) to be a platform for experimentation with ideas in Bayesian modeling.

JAGS is designed to work closely with the R language and environment for statistical computation and
graphics (http://www.r-project.org). You will find it useful to install the R coda package analyze the
output. You can also use the rjags package to work directly with JAGS from within R as illustrated below.

JAGS, like R, is licensed under the GNU General Public License version 2. You may freely modify and
redistribute it under certain conditions.

1

2.1 Running a JAGS model from R

Running a JAGS model refers to generating samples from the posterior distribution of the model parameters.
This takes place in five steps:

1. Definition of the model

2. Compilation

3. Initialization

4. Adaptation and burn-in

5. Monitoring

The subsequent stages of analysis are done outside of JAGS: convergence diagnostics, model assessment, and
summarizing the samples must be done using other packages more suited to this task. There are several R
packages designed for analyzing MCMC output, and JAGS can be used from within R using the rjags package.

3 Intercept only model

Let’s begin by simulating some data from model (1).

> set.seed(1)

> n <- 100

> beta.0 <- 0

> sigma.sq <- 5

> y <- rnorm(n, beta.0, sqrt(sigma.sq))

We will want to sample from the posterior distributions of beta.0 and sigma.sq, which correspond to
β0 and σ2 in model (1). To complete the Bayesian specification, we need to choose prior distributions for
each parameter. A customary prior for β’s is Normal and we write β0 ∼ N(µβ0 , σ

2
β0

) (for this model, one
might also use a flat prior). Assuming we don’t have much prior information about β0, reasonable vague or
non-informative hyper-parameters would be µβ0

= 0 and σ2
β0

= 100000. Warning—distribution definitions
in JAGS and BUGS languages differ from those used in R, e.g., R’s dnorm takes a standard deviation for
the dispersion parameter, whereas, JAGS and BUGS take the precision which is the inverse of the variance
parameter. On this side of the pond, most of us are used to working with a variance or standard deviation,
not the precision. With this in mind, here is the content of the JAGS model file ex-1.jag.

model{
for (i in 1 : n){

y [i] ∼ dnorm(beta .0 , t au . sq)
}

beta . 0 ∼ dnorm (0 , 0 .0001)
tau . sq ← 1/ s igma.sq
s igma.sq ∼ duni f (0 , 100)
}

In every model specification file, you have to start out by telling JAGS that you’re specifying a model. Then
you set up the model for every single data point using a for loop. Here, we say that y[i] is distributed
normally (hence the y∼dnorm call) with mean beta.0 and precision tau.sq. Then we specify our priors for
beta.0 and tau.sq, which are meant to be constant across the loop. We tell JAGS that beta.0 is distributed
normally with mean 0 and standard deviation 1000. Then we specify tau.sq in a round-about way. We
say that tau.sq is a deterministic function (hence the deterministic <- instead of the distributional ∼) of

2

sigma.sq. In this way we can put our prior on sigma.sq. We could of course skip all of this and just put
the prior directly on tau.sq, but I generally have a better feel for the distribution of a variance as opposed
to a precision parameter, especially when we consider priors other than uniform, e.g., Gamma, log-Normal,
inverse-Gamma, chi-squared (see, e.g., Gelman 2006, for prior suggestions for variance parameters).

Once the JAGS model is complete, the rest of the work happens in R. In the code below, we define
those data elements that are referenced in the JAGS model and initial values for the parameters. Recall,
JAGS will take a look at the model and determine an appropriate MCMC sampler, e.g., Gibbs, Metropolis-
Hastings, slice, or other specialized sampling algorithm. All of these samplers require some initial values for
the parameters. In some cases, JAGS can guess starting values on its own, but it is typically best to provide
reasonable values—especially for complex models. The JAGS model file, data objects, and initial values are
passed to the jags.model function, which constructs a jags model object. Here too, we specify the number of
MCMC chains via the n.chains argument. The final argument in the function call below, n.adapt, specifies
the number of initial samples during which the samplers adapt behavior to maximize efficiency (e.g., this
would be a step size adjustments if a Metropolis-Hastings random walk algorithm is used). The sequence of
samples generated during this adaptive phase is not a Markov chain, and therefore should not be included
in the resulting posterior samples.

> data <- list(y = y, n = n)

> inits <- list(beta.0 = 0, sigma.sq = 1)

> jags.m <- jags.model(file = "ex-1.jag", data = data,

+ inits = inits, n.chains = 3, n.adapt = 100)

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 108

Initializing model

Upon calling the jags.model function, the underlying JAGS program compiles the model, checks for any
undefined variables and parameters, and gets the model ready to collect posterior samples. These checks are
written to the terminal as seen in the call above.

We often specify models with many parameters, e.g., in random effects models we might have thousands.
It can be computationally expensive to explicitly collect posterior samples from all of these parameters—
referred to as monitoring in JAGS and BUGS documentation. Therefore, we explicitly specify which param-
eters should be monitored. Then, given the jags.model object, the desired number of samples are collected
via a call to the coda.samples function and, as shown below, stored in a coda object.

> params <- c("beta.0", "sigma.sq")

> samps <- coda.samples(jags.m, params, n.iter = 2000)

> plot(samps)

Figure 1 illustrates the posterior samples from 2000 MCMC iterations. Summaries of these samples, after
suitable burn-in, are then used for parameter inference. As show in the code and output below, the call to
summary produces commonly assessed summary statistics. I generally look at the median and lower/upper
95% credible intervals. Importantly, given the posterior samples, we can look at any function of the posterior
distribution. This is often handy when the model is fit using some transformation of a given variable, but our
interest is in the parameter value associated with the non-transformed variable. For example, say a covariate
was log transformed to improve convergence or to meet some model assumptions. Then, inference about the
impact of the non-transformed covariate is obtained by simply exponentiating each posterior sample prior
to summarization (life is not so simple for frequentists).

> burn.in <- 1000

> summary(window(samps, start = burn.in))

3

500 1000 1500 2000

−
0.

5
0.

0
0.

5
1.

0

Iterations

Trace of beta.0

−0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

density.default(x = y, width = width)

N = 2000 Bandwidth = 0.03829

Density of beta.0

500 1000 1500 2000

3
4

5
6

Iterations

Trace of sigma.sq

3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

density.default(x = y, width = width)

N = 2000 Bandwidth = 0.113

Density of sigma.sq

Figure 1: Posterior sample chain and density plots for β0 and σ2.

Iterations = 1000:2100

Thinning interval = 1

Number of chains = 3

Sample size per chain = 1101

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

beta.0 0.2385 0.2085 0.003629 0.003747

sigma.sq 4.1820 0.6030 0.010492 0.014588

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

beta.0 -0.1637 0.09437 0.2387 0.3746 0.6589

sigma.sq 3.1515 3.75734 4.1367 4.5634 5.4978

> round(summary(window(samps, start = burn.in))$quantiles[,

+ c(3, 1, 5)], 2)

50% 2.5% 97.5%

beta.0 0.24 -0.16 0.66

sigma.sq 4.14 3.15 5.50

Parameter inference from posterior samples is only valid when the MCMC chains, associated with the
given parameter of interest, have converged. Gelman (2004) provides a detailed discussion on convergence
diagnostics. At minimum we should check that the chains are mixing (assuming dispersed starting values
were used to initialize the chains) using the trace plots, e.g., Figure 1, and consider a convergence a rule such

4

500 1000 1500 2000

1.
00

1.
02

1.
04

1.
06

1.
08

1.
10

1.
12

1.
14

last iteration in chain

sh
rin

k
fa

ct
or

median
97.5%

beta.0

500 1000 1500 2000

1.
00

1.
05

1.
10

last iteration in chain

sh
rin

k
fa

ct
or

median
97.5%

sigma.sq

Figure 2: Gelman-Rubin diagnostic plots for β0 and σ2.

as the Gelman-Rubin diagnostic (Gelman and Rubin 1992). Basically, Gelman-Rubin measures whether
there is a significant difference between the variance within several chains and the variance between several
chains by the potential scale reduction factors. Convergence is diagnosed when the chains have “forgotten”
their initial values, and the output from all chains is indistinguishable. This diagnostic is available in coda
and illustrated in the code below.

> gelman.diag(samps)

Potential scale reduction factors:

Point est. Upper C.I.

beta.0 1 1

sigma.sq 1 1

Multivariate psrf

1

> gelman.plot(samps)

The gelman.diag gives you the scale reduction factors for each parameter. A factor of 1 means that
between chain variance and within chain variance are equal, larger values mean that there is still a notable
difference between chains. A rule of thumb is that values of 1.1 and less suggests adequate convergence. The
gelman.plot, Figure 2, shows you the development of the scale-reduction over the chain iterations, which
is useful to see whether a low chain reduction is also stable (sometimes, the factors go down and then up
again). This plot is also useful for determining a burn-in, which is the iteration after which the lines stay
below ∼1.1.

5

4 Prediction

Say you have some sample units for which you want to predict y. In more realistic settings we typically want
predictions for units where we have observed x but not y; however, since we are dealing with an intercept
only model in this illustration then the intercept β0 is the only information to inform prediction. Regardless,
making prediction in BUGS or JAGS is the same in either setting—simply set those units in the response
vector to NA. The resulting samples at the NA locations in the response vector are samples from the posterior
predictive distribution and can be summarized just like model parameters. This is illustrated in the code
below where 25 observations are withheld for subsequent prediction.

> n.0 <- 25

> y[1:n.0] <- NA

> data <- list(y = y, n = n)

> inits <- list(beta.0 = 0, sigma.sq = 1)

> jags.m <- jags.model(file = "ex-1.jag", data = data,

+ inits = inits, n.chains = 3, n.adapt = 100)

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 108

Initializing model

> params <- c("beta.0", "sigma.sq", "y")

> samps <- coda.samples(jags.m, params, n.iter = 2000)

> round(summary(window(samps[, paste("y[", 1:25, "]",

+ sep = "")], start = burn.in))$quantiles[, c(3,

+ 1, 5)], 2)

50% 2.5% 97.5%

y[1] 0.20 -3.84 4.18

y[2] 0.17 -3.78 4.13

y[3] 0.18 -3.72 4.29

y[4] 0.19 -3.70 4.23

y[5] 0.20 -3.71 4.08

y[6] 0.18 -4.04 4.24

y[7] 0.23 -3.80 4.20

y[8] 0.18 -3.82 4.20

y[9] 0.27 -3.93 4.21

y[10] 0.25 -3.85 4.24

y[11] 0.25 -3.91 4.30

y[12] 0.22 -3.62 4.08

y[13] 0.13 -3.91 4.20

y[14] 0.19 -3.64 4.15

y[15] 0.13 -3.83 4.18

y[16] 0.21 -3.74 4.14

y[17] 0.22 -3.82 4.16

y[18] 0.28 -3.84 4.26

y[19] 0.22 -3.78 4.11

y[20] 0.22 -3.82 4.21

y[21] 0.15 -3.81 4.12

y[22] 0.17 -3.91 4.24

6

y[23] 0.21 -3.81 4.36

y[24] 0.15 -4.04 4.21

y[25] 0.14 -3.84 4.11

5 References

Gelman, A. and Rubin, D.B. (1992) Inference from iterative simulation using multiple sequences. Statistical
Science, 7:457–511.

Gelman, A. (2006) Prior distributions for variance parameters in hierarchical models. Bayesian Analysis,
1:1–19.

7

