Hierarchical Modelling for Univariate Spatial Data

Sudipto Banerjee\(^1\) and Andrew O. Finley\(^2\)

\(^1\) Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A.
\(^2\) Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

March 9, 2009

Algorithmic Modelling

- Spatial surface observed at finite set of locations \(\mathcal{S} = \{s_1, s_2, ..., s_n\}\)
- Tessellate the spatial domain (usually with data locations as vertices)
- Fit an interpolating polynomial:
 \[f(s) = \sum_i w_i(\mathcal{S}; s)f(s_i) \]
- "Interpolate" by reading off \(f(s_0)\).
- Issues:
 - Sensitivity to tessellations
 - Choices of multivariate interpolators
 - Numerical error analysis

Simple linear model

- Response: \(Y(s)\) at location \(s\)
- Mean: \(\mu = x^T(s)\beta\)
- Error: \(\epsilon(s) \overset{iid}{\sim} N(0, \tau^2)\)
Univariate spatial models

Spatial Gaussian processes (GP):
- Say \(w(s) \sim GP(0, \sigma^2 R(\phi)) \) and
 \[
 \text{Cov}(w(s_1), w(s_2)) = \sigma^2 \rho(\phi; \|s_1 - s_2\|)
 \]
- Let \(w = [w(s_i)]_{i=1}^n \), then
 \[
 w \sim N(0, \sigma^2 R(\phi)), \quad \text{where } R(\phi) = \rho(\phi; \|s_i - s_j\|)
 \]

Realization of a Gaussian process:
- Changing \(\phi \) and holding \(\sigma^2 = 1 \):
 \[
 w \sim N(0, \sigma^2 R(\phi)), \quad \text{where } R(\phi) = \rho(\phi; \|s_i - s_j\|)
 \]

Simple linear model + random spatial effects

Univariate spatial models

Hierarchical modelling

1. First stage:
 \[
 y(\beta, w, \tau^2) \sim \prod_{i=1}^n N(Y(s_i) | X^T(s_i)\beta + w(s_i), \tau^2)
 \]

2. Second stage:
 \[
 w(\sigma^2, \phi) \sim N(0, \sigma^2 R(\phi))
 \]

3. Third stage:
 - Priors on \(\Omega = (\beta, \tau^2, \sigma^2, \phi) \)
 - Marginalized likelihood:
 \[
 y(\Omega) \sim N(x(\beta, \tau^2 R(\phi) + \tau^2 I)
 \]
 - Note: Spatial process parametrizes \(\Sigma \):
 \[
 y = X\beta + \epsilon, \quad \epsilon \sim N(0, \Sigma), \quad \Sigma = \sigma^2 R(\phi) + \tau^2 I
 \]

Bayesian Computations

- Choice: Fit \(y|\Omega \times |\Omega \) or \(y|\beta, w, \tau^2 \times |w|\sigma^2, \phi \times |\Omega \).
- Conditional model:
 - conjugate full conditionals for \(\sigma^2, \tau^2 \) and \(w \) – easier to program.
- Marginalized model:
 - need Metropolis or Slice sampling for \(\sigma^2, \tau^2 \) and \(\phi \). Harder to program.
 - But, reduced parameter space \(\Rightarrow \) faster convergence
 - \(\sigma^2 R(\phi) + \tau^2 I \) is more stable than \(\sigma^2 R(\phi) \).
- But what about \(R^{-1}(\phi) \) ?? EXPENSIVE!
Where are the w’s?

- Interest often lies in the spatial surface \(w | y \).

- They are recovered from

\[
[w | y, X] = \int [w | \Omega, y, X] \times [\Omega | y, X] \, d\Omega
\]

using posterior samples:

- Obtain \(\Omega^{(1)}, \ldots, \Omega^{(G)} \sim [\Omega | y, X] \)
- For each \(\Omega^{(g)} \), draw \(w^{(g)} \sim [w | \Omega^{(g)}, y, X] \)

NOTE: With Gaussian likelihoods \([w | \Omega, y, X] \) is also Gaussian. With other likelihoods this may not be easy and often the conditional updating scheme is preferred.

Often we need to predict \(Y(s) \) at a **new** set of locations \(\{ \tilde{s}_0, \ldots, \tilde{s}_m \} \) with associated predictor matrix \(\tilde{X} \).

- Sample from predictive distribution:

\[
[\tilde{y} | y, X, \tilde{X}] = \int [\tilde{y} | \Omega, y, X, \tilde{X}] \, d\Omega
\]

\[
= \int [\tilde{y} | \Omega, y, X, \tilde{X}] \times [\Omega | y, X] \, d\Omega,
\]

\([\tilde{y}, \Omega, X, \tilde{X}] \) is multivariate normal. Sampling scheme:

- Obtain \(\Omega^{(1)}, \ldots, \Omega^{(G)} \sim [\Omega | y, X] \)
- For each \(\Omega^{(g)} \), draw \(\tilde{y}^{(g)} \sim [\tilde{y} | \tilde{y}, \Omega^{(g)}, X, \tilde{X}] \).
Colorado data illustration

- Modelling temperature: 507 locations in Colorado.
- Simple spatial regression model:
 \[
 Y(s) = X(s)\beta + w(s) + \epsilon(s)
 \]
- \(w(s) \sim GP(0, \sigma^2 \rho(\cdot; \phi, \nu)) \); \(\epsilon(s) \overset{iid}{\sim} N(0, \tau^2) \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>50% (2.5%, 97.5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2.827 (2.131, 3.866)</td>
</tr>
<tr>
<td>[Elevation]</td>
<td>-0.426 (-0.527, -0.333)</td>
</tr>
<tr>
<td>Precipitation</td>
<td>0.037 (0.002, 0.072)</td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>0.134 (0.051, 1.245)</td>
</tr>
<tr>
<td>(\phi)</td>
<td>7.36E-3 (4.71E-3, 51.21E-3)</td>
</tr>
<tr>
<td>Range</td>
<td>278.2 (38.8, 476.3)</td>
</tr>
<tr>
<td>(\tau^2)</td>
<td>0.051 (0.022, 0.092)</td>
</tr>
</tbody>
</table>