Hierarchical Modelling for Univariate Spatial Data

Sudipto Banerjee1 and Andrew O. Finley2

1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A.

2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

March 9, 2009
Spatial Domain
Algorithmic Modelling

- Spatial surface observed at finite set of locations
 \(\mathcal{I} = \{s_1, s_2, \ldots, s_n\} \)
- Tessellate the spatial domain (usually with data locations as vertices)
- Fit an interpolating polynomial:
 \[
 f(s) = \sum_i w_i(\mathcal{I}; s) f(s_i)
 \]
- “Interpolate” by reading off \(f(s_0) \).
- Issues:
 - Sensitivity to tessellations
 - Choices of multivariate interpolators
 - Numerical error analysis
Univariate spatial models

What is a spatial process?

\[Y(s_1) \]
\[Y(s_2) \]
\[\vdots \]
\[Y(s_n) \]
Simple linear model

\[Y(s) = \mu(s) + \epsilon(s), \]

- **Response:** \(Y(s) \) at location \(s \)
- **Mean:** \(\mu = x^T(s)\beta \)
- **Error:** \(\epsilon(s) \overset{iid}{\sim} N(0, \tau^2) \)
Simple linear model

\[Y(s) = \mu(s) + \epsilon(s), \]

Assumptions regarding \(\epsilon(s) \):

- \(\epsilon(s) \overset{iid}{\sim} N(0, \tau^2) \)
Simple linear model

\[Y(s) = \mu(s) + \epsilon(s), \]

Assumptions regarding \(\epsilon(s) \):

- \(\epsilon(s) \overset{iid}{\sim} N(0, \tau^2) \)
- \(\epsilon(s_i) \) and \(\epsilon(s_j) \) are uncorrelated for all \(i \neq j \)
Spatial Gaussian processes (GP):

- Say $w(s) \sim GP(0, \sigma^2 \rho(\cdot))$ and

$$\text{Cov}(w(s_1), w(s_2)) = \sigma^2 \rho(\phi; \|s_1 - s_2\|)$$
Spatial Gaussian processes (GP):

- Say $w(s) \sim GP(0, \sigma^2 \rho(\cdot))$ and

$$\text{Cov}(w(s_1), w(s_2)) = \sigma^2 \rho(\phi; \|s_1 - s_2\|)$$

- Let $w = [w(s_i)]_{i=1}^n$, then

$$w \sim N(0, \sigma^2 R(\phi)), \text{ where } R(\phi) = [\rho(\phi; \|s_i - s_j\|)]_{i,j=1}^n$$
Realization of a Gaussian process:

- Changing ϕ and holding $\sigma^2 = 1$:

\[w \sim N(0, \sigma^2 R(\phi)), \text{ where} \]
\[R(\phi) = [\rho(\phi; \| s_i - s_j \|)]_{i,j=1}^n \]
Realization of a Gaussian process:

- Changing ϕ and holding $\sigma^2 = 1$:
 \[
 \mathbf{w} \sim N(\mathbf{0}, \sigma^2 R(\phi)), \text{ where}
 \]
 \[
 R(\phi) = [\rho(\phi; \|\mathbf{s}_i - \mathbf{s}_j\|)]_{i,j=1}^n
 \]

- Correlation model for $R(\phi)$:
 e.g., exponential decay
 \[
 \rho(\phi; t) = \exp(-\phi t) \text{ if } t > 0.
 \]
Realization of a Gaussian process:

- Changing ϕ and holding $\sigma^2 = 1$:
 \[
 \mathbf{w} \sim N(\mathbf{0}, \sigma^2 R(\phi)), \text{ where } \\
 R(\phi) = \left[\rho(\phi; \| \mathbf{s}_i - \mathbf{s}_j \|) \right]_{i,j=1}^n
 \]

- Correlation model for $R(\phi)$: e.g., exponential decay
 \[
 \rho(\phi; t) = \exp(-\phi t) \text{ if } t > 0.
 \]

- Other valid models e.g., Gaussian, Spherical, Matérn.
- Effective range,
 \[
 t_0 = \ln(0.05)/\phi \approx 3/\phi
 \]
$w \sim N(0, \sigma_w^2 R(\phi))$ defines complex spatial dependence structures.

E.g., anisotropic Matérn correlation function:

$$\rho(s_i, s_j; \phi) = \left(1 / \Gamma(\nu) 2^{\nu - 1}\right) \left(2 \sqrt{\nu d_{ij}}\right)^\nu \kappa_\nu \left(2 \sqrt{\nu d_{ij}}\right),$$

where $d_{ij} = (s_i - s_j)' \Sigma^{-1} (s_i - s_j)$, $\Sigma = G(\psi) \Lambda^2 G(\psi)'$. Thus, $\phi = (\nu, \psi, \Lambda)$.

![Simulated](image1.png)
![Predicted](image2.png)
Simple linear model + random spatial effects

\[Y(s) = \mu(s) + w(s) + \epsilon(s), \]

- **Response**: \(Y(s) \) at some site
- **Mean**: \(\mu = x^T(s)\beta \)
- **Spatial random effects**: \(w(s) \sim GP(0, \sigma^2 \rho(\phi; \|s_1 - s_2\|)) \)
- **Non-spatial variance**: \(\epsilon(s) \overset{iid}{\sim} N(0, \tau^2) \)
Hierarchical modelling

First stage:

\[y \mid \beta, w, \tau^2 \sim \prod_{i=1}^{n} N(Y(s_i) \mid x^T(s_i)\beta + w(s_i), \tau^2) \]
Hierarchical modelling

- **First stage:**

\[y | \beta, w, \tau^2 \sim \prod_{i=1}^{n} N(Y(s_i) | x^T(s_i)\beta + w(s_i), \tau^2) \]

- **Second stage:**

\[w | \sigma^2, \phi \sim N(0, \sigma^2 R(\phi)) \]
Hierarchical modelling

- **First stage:**
 \[y|\beta, w, \tau^2 \sim \prod_{i=1}^{n} N(Y(s_i)|x^T(s_i)\beta + w(s_i), \tau^2) \]

- **Second stage:**
 \[w|\sigma^2, \phi \sim N(0, \sigma^2 R(\phi)) \]

- **Third stage:** Priors on \(\Omega = (\beta, \tau^2, \sigma^2, \phi) \)
Hierarchical modelling

First stage:

\[y | \beta, w, \tau^2 \sim \prod_{i=1}^{n} N(Y(s_i) | x^T(s_i)\beta + w(s_i), \tau^2) \]

Second stage:

\[w | \sigma^2, \phi \sim N(0, \sigma^2 R(\phi)) \]

Third stage: Priors on \(\Omega = (\beta, \tau^2, \sigma^2, \phi) \)

Marginalized likelihood:

\[y | \Omega \sim N(X\beta, \sigma^2 R(\phi) + \tau^2 I) \]
Hierarchical modelling

- **First stage:**
 \[y|\beta, w, \tau^2 \sim \prod_{i=1}^{n} N(Y(s_i) | x^T(s_i)\beta + w(s_i), \tau^2) \]

- **Second stage:**
 \[w|\sigma^2, \phi \sim N(0, \sigma^2 R(\phi)) \]

- **Third stage:** Priors on \(\Omega = (\beta, \tau^2, \sigma^2, \phi) \)
 - **Marginalized likelihood:**
 \[y|\Omega \sim N(X\beta, \sigma^2 R(\phi) + \tau^2 I) \]

- **Note:** Spatial process parametrizes \(\Sigma \):
 \[y = X\beta + \epsilon, \epsilon \sim N(0, \Sigma), \Sigma = \sigma^2 R(\phi) + \tau^2 I \]
Bayesian Computations

Choice: Fit \([y|\Omega] \times [\Omega]\) or \([y|\beta, w, \tau^2] \times [w|\sigma^2, \phi] \times [\Omega]\).
Bayesian Computations

- **Choice:** Fit \(y | \Omega \times [\Omega] \) or \(y | \beta, w, \tau^2 \times [w | \sigma^2, \phi] \times [\Omega] \).

- **Conditional model:**
 - conjugate full conditionals for \(\sigma^2, \tau^2 \) and \(w \) – easier to program.
Bayesian Computations

- **Choice:** Fit $[y|\Omega] \times [\Omega]$ or $[y|\beta, w, \tau^2] \times [w|\sigma^2, \phi] \times [\Omega]$.

- **Conditional model:**
 - conjugate full conditionals for σ^2, τ^2 and w – easier to program.

- **Marginalized model:**
 - need Metropolis or Slice sampling for σ^2, τ^2 and ϕ. Harder to program.
 - But, reduced parameter space \Rightarrow faster convergence
 - $\sigma^2 R(\phi) + \tau^2 I$ is more stable than $\sigma^2 R(\phi)$.
Bayesian Computations

- **Choice:** Fit \([y|Ω] \times [Ω]\) or \([y|β, w, τ^2] \times [w|σ^2, φ] \times [Ω]\).

- **Conditional model:**
 - conjugate full conditionals for \(σ^2, τ^2\) and \(w\) – easier to program.

- **Marginalized model:**
 - need Metropolis or Slice sampling for \(σ^2, τ^2\) and \(φ\). Harder to program.
 - But, reduced parameter space \(⇒\) faster convergence
 - \(σ^2 R(φ) + τ^2 I\) is more stable than \(σ^2 R(φ)\).

- But what about \(R^{-1}(φ)\)?? EXPENSIVE!
Where are the w's?

- Interest often lies in the spatial surface $w|y$.

NOTE: With Gaussian likelihoods $[w|\Omega, y, X]$ is also Gaussian. With other likelihoods this may not be easy and often the conditional updating scheme is preferred.
Where are the w’s?

Interest often lies in the spatial surface $w|y$.

They are recovered from

$$[w|y, X] = \int [w|\Omega, y, X] \times [\Omega|y, X] d\Omega$$

using posterior samples:
Where are the \(w \)’s?

- Interest often lies in the spatial surface \(w|y \).
- They are recovered from

\[
[w|y, X] = \int [w|\Omega, y, X] \times [\Omega|y, X] d\Omega
\]

using posterior samples:

- Obtain \(\Omega^{(1)}, \ldots, \Omega^{(G)} \sim [\Omega|y, X] \)
- For each \(\Omega^{(g)} \), draw \(w^{(g)} \sim [w|\Omega^{(g)}, y, X] \)
Where are the w’s?

- Interest often lies in the spatial surface $w|y$.

- They are recovered from

$$[w|y, X] = \int [w|\Omega, y, X] \times [\Omega|y, X] d\Omega$$

using posterior samples:

- Obtain $\Omega^{(1)}, \ldots, \Omega^{(G)} \sim [\Omega|y, X]$.
- For each $\Omega^{(g)}$, draw $w^{(g)} \sim [w|\Omega^{(g)}, y, X]$.

NOTE: With Gaussian likelihoods $[w|\Omega, y, X]$ is also Gaussian. With other likelihoods this may not be easy and often the conditional updating scheme is preferred.
Residual plot: $[w(s)|y]$
Another look: $[w(s) | y]$
Another look: \([w(s)|y]\)
Often we need to predict $Y(s)$ at a *new* set of locations $\{\tilde{s}_0, \ldots, \tilde{s}_m\}$ with associated predictor matrix \tilde{X}.

Sample from predictive distribution:

$$[\tilde{y}|y, X, \tilde{X}] = \int [\tilde{y}, \Omega|y, X, \tilde{X}] d\Omega$$

$$= \int [\tilde{y}|y, \Omega, X, \tilde{X}] \times [\Omega|y, X] d\Omega,$$

$[\tilde{y}|y, \Omega, X, \tilde{X}]$ is multivariate normal. Sampling scheme:

- Obtain $\Omega^{(1)}, \ldots, \Omega^{(G)} \sim [\Omega|y, X]$
- For each $\Omega^{(g)}$, draw $\tilde{y}^{(g)} \sim [\tilde{y}|y, \Omega^{(g)}, X, \tilde{X}].$
Prediction: Summary of $[Y(\mathbf{s}) | \mathbf{y}]$
Colorado data illustration

- Modelling temperature: 507 locations in Colorado.
- Simple spatial regression model:

$$Y(s) = x^T(s)\beta + w(s) + \epsilon(s)$$

$$w(s) \sim GP(0, \sigma^2\rho(\cdot; \phi, \nu)); \epsilon(s) \overset{iid}{\sim} N(0, \tau^2)$$

<table>
<thead>
<tr>
<th>Parameters</th>
<th>50% (2.5%,97.5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept [Elevation]</td>
<td>2.827 (2.131,3.866)</td>
</tr>
<tr>
<td>Precipitation</td>
<td>-0.426 (-0.527,-0.333)</td>
</tr>
<tr>
<td>σ^2</td>
<td>0.037 (0.002,0.072)</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.134 (0.051, 1.245)</td>
</tr>
<tr>
<td>Range</td>
<td>7.39E-3 (4.71E-3, 51.21E-3)</td>
</tr>
<tr>
<td>τ^2</td>
<td>278.2 (38.8, 476.3)</td>
</tr>
<tr>
<td></td>
<td>0.051 (0.022, 0.092)</td>
</tr>
</tbody>
</table>
Univariate spatial models

Illustration

Temperature residual map
Elevation map
Residual map with elev. as covariate