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Multivariate spatial modeling

Point-referenced spatial data often come as multivariate
measurements at each location.
Examples:

Environmental monitoring: stations yield measurements on
ozone, NO, CO, and PM2.5.
Community ecology: assemblages of plant species due to
water availibility, temperature, and light requirements.
Forestry: measurements of stand characteristics age, total
biomass, and average tree diameter.
Atmospheric modeling: at a given site we observe surface
temperature, precipitation and wind speed

We anticipate dependence between measurements
at a particular location
across locations
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Multivariate spatial modeling

Bivariate Linear Spatial Regression

A single covariate X(s) and a univariate response Y (s)

At any arbitrary point in the domain, we conceive a linear
spatial relationship:

E[Y (s) |X(s)] = β0 + β1X(s);

where X(s) and Y (s) are spatial processes.

Regression on uncountable sets:

Regress {Y (s) : s ∈ D} on {X(s) : s ∈ D} .
Inference:

Estimate β0 and β1.
Estimate spatial surface {X(s) : s ∈ D}.
Estimate spatial surface {Y (s) : s ∈ D}.
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Bivariate spatial process

A bivariate distribution [Y,X] will yield regression [Y |X].

So why not start with a bivariate process?

Z(s) =
[
X(s)
Y (s)

]
∼ GP2

([
µX(s)
µY (s)

]
,

[
CXX(·;θZ) CXY (·;θZ)
CY X(·;θZ) CY Y (·;θZ)

])

The cross-covariance function:

CZ(s, t;θZ) =

[
CXX(s, t;θZ) CXY (s, t;θZ)
CY X(s, t;θZ) CY Y (s, t;θZ)

]
,

where CXY (s, t) = cov(X(s), Y (t)) and so on.
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Cross-covariance functions satisfy certain properties:

CXY (s, t) = cov(X(s), Y (t)) = cov(Y (t), X(s)) = CY X(t,s).

Caution: CXY (s, t) 6= CXY (t,s) and CXY (s, t) 6= CY X(s, t)
.

In matrix terms, CZ(s, t;θZ)
> = CZ(t,s;θZ)

Positive-definiteness for any finite collection of points:

n∑

i=1

n∑

j=1

a>
i CZ(si, tj ;θZ)aj > 0 for all ai ∈ <2 \ {0}.
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Bivariare Spatial Regression from a Separable Process

To ensure E[Y (s) |X(s)] = β0 + β1X(s), we assume

Z(s) =
[
X(s)
Y (s)

]
∼ N

([
µ1
µ2

]
,

[
T11 T12
T12 T22

])
for every s ∈ D

Simplifying assumption :

CZ(s, t) = ρ(s, t)T =⇒ ΣZ = {ρ(si,sj)T} = R(φ)⊗ T .
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Multivariate spatial modeling

Then, p(Y (s) |X(s)) = N(Y (s) |β0 + β1X(s), σ2), where

β0 = µ2 −
T12
T11

µ1,

β1 =
T12
T11

,

σ2 = T22 −
T 2
12

T11
.

Regression coefficients are functions of process
parameters.

Estimate {µ1, µ2, T11, T12, T22} by sampling from

p(φ)×N(µ | δ,Vµ)× IW (T | r,S)×N(Z |µ,R(φ)⊗ T)

Immediately obtain posterior samples of {β0, β1, σ2}.
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Bivariate Spatial Regression with Misalignment

Rearrange the components of Z to
Z̃ = (X(s1), X(s2), . . . , X(sn), Y (s1), Y (s2), . . . , Y (sn))

>

yields [
X
Y

]
∼ N

([
µ11
µ21

]
, T⊗ R (φ)

)
.

Priors: Wishart for T−1, normal (perhaps flat) for (µ1, µ2),
discrete prior for φ or perhaps a uniform on (0, .5max dist).

Estimation: Markov chain Monte Carlo (Gibbs, Metropolis,
Slice, HMC/NUTS); Integrated Nested Laplace
Approximation (INLA).
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Hierarchical approach (Royle and Berliner, 1999; Cressie and
Wikle, 2011)

Y (s) and X(s) observed over a finite set of locations
S = {s1,s2, . . . ,sn}.

Y and X are n× 1 vectors of observed Y (si)’s and X(si)’s,
respectively.

How do we model Y |X?

No “conditional process”—meaningless to talk about the
joint distribution of Y (si) |X(si) and Y (sj) |X(sj) for two
distinct locations si and sj .

Can model using [X]× [Y |X] but can we interpolate/predict
at arbitrary locations?
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Hierarchical approach (contd.)

X(s) ∼ GP (µX(s), CX(·;θX)). Therefore,
X ∼ N(µX ,CX(θX)).

CX(θX) is n× n with entries CX(si,sj ;θX).

e(s) ∼ GP (0, Ce(·;θe)); Ce is analogous to CX .

Y (si) = β0 + β1X(si) + e(si) , for i = 1, 2, . . . , n .

Joint distribution of Y and X:
(

X
Y

)
∼ N

([
µX
µY

]
,

[
CX(θX) β1CX(θX)
β1CX(θX) Ce(θe) + β2

1CX(θX)

])
,

where µY = β01 + β1µX .
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This joint distribution arises from a bivariate spatial process:

W(s) =
[
X(s)
Y (s)

]
and E[W(s)] = µW (s) =

[
µX(s)

β0 + β1µX(s)

]
.

and cross-covariance

CW (s,s′) =
[

CX(s,s′) β1CX(s,s′)
β1CX(s,s′) β21CX(s,s′) + Ce(s,s′)

]
,

where we have suppressed the dependence of CX(s,s′) and
Ce(s,s′) on θX and θe respectively. This implies that
E[Y (s) |X(s)] = β0 + β1X(s) for any arbitrary location s,
thereby specifying a well-defined spatial regression model for
an arbitrary s.
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Coregionalization (Wackernagel)

Separable models assume one spatial range for both X(s)
and Y (s).

Coregionalization helps to introduce a second “range
parameter.”

Introduce two “latent” independent GP’s, each having its
own parameters:

v1(s) ∼ GP (0, ρ1(·;φ1)) and v2(s) ∼ GP (0, ρ2(·;φ2))

Construct a bivariate process as the linear transformation:

w1(s) = a11v1(s)
w2(s) = a21v1(s) + a22v2(s)
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Coregionalization

Short form:

w(s) =
[
a11 0
a21 a22

] [
v1(s)
v2(s)

]
= Av(s)

Cross-covariance of v(s):

Cv(s, t) =
[
ρ1(s, t;φ1) 0

0 ρ2(s, t;φ2)

]

Cross-covariance of w(s):

Cw(s, t) = ACv(s, t)A> .

It is a valid cross-covariance function (by construction).

If s = t, then Cw(s,s) = AA>. No loss of generality to
specify A as (lower) triangular.
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If v1(s) and v2(s) have identical correlation functions, then
ρ1(s, t) = ρ2(s, t) and

Cw(s) = ρ(s, t;φ)AA> =⇒ separable model

Coregionalized Spatial Linear Model
[
X(s)
Y (s)

]
=

[
µX(s)
µY (s)

]
+

[
w1(s)
w2(s)

]
+

[
eX(s)
eY (s)

]
,

where eX(s) and eY (s) are independent white-noise
processes

[
eX(s)
eY (s)

]
∼ N2

([
0
0

]
,

[
τ2X 0
0 τ2Y

])
for every s ∈ D .
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Generalizations

Each location contains m spatial regressions

Yk(s) = µk(s) + wk(s) + εk(s), k = 1, . . . ,m.

Let vk(s) ∼ GP (0, ρk(s,s′)), for k = 1, . . . ,m be m
independent GP’s with unit variance.

Assume w(s) = A(s)v(s) arises as a space-varying linear
transformation of v(s). Then:

Cw(s, t) = A(s)Cv(s, t)A>(t)

is a valid cross-covariance function.

A(s) is unknown!
Should we first model A(s) to obtain Cw(s,s)?
Or should we model Cw(s, t) first and derive A(s)?
A(s) is completely determined from within-site associations.
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Other approaches for cross-covariance models

Convolutions of processes and covariance functions
Gaspari and Cohn (Quart. J. Roy. Met. Soc., 1999).
Majumdar and Gelfand (Math. Geo., 2007).

Latent dimension approach:
Apanasovich and Genton (Biometrika, 2010).
Apanasovich et al. (JASA, 2012).

Multivariate Matérn family
Gneiting et al. (JASA, 2010).

Nonstationary variants of coregionalization
Space-varying: Gelfand et al. (Test, 2010).
Dimension-reducing (over space): Guhaniyogi et al.
(JABES, 2012).
Dimension-reducing (over outcomes): Ren and Banerjee
(Biometrics, 2013).
Variogram modeling: De Iaco et al. (Math. Geo., 2003).
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