

MutualizationCoregionalization• Short form:
$$w(s) = \begin{bmatrix} a_{11} & a_{22} \\ b_{12}(s) \end{bmatrix} = Av(s)$$
• If $v_1(s)$ and $v_2(s)$ have identical correlation functions, then $\rho_1(s, t) = \rho_2(s, t)$ and• Cross-covariance of $v(s)$: $C_w(s, t) = \rho(s, t; \phi)AA^{\top} \longrightarrow$ separable model• Cross-covariance of $v(s)$: $C_w(s, t) = \rho(s, t; \phi)AA^{\top} \longrightarrow$ separable model• Cross-covariance of $w(s)$: $C_w(s, t) = \rho(s, t; \phi)AA^{\top} \longrightarrow$ separable model• Cross-covariance of $w(s)$: $C_w(s, t) = AC_w(s, t)A^{\top}$.• It is a valid cross-covariance function (by construction).• If $s = t$, then $C_w(s, s) = AA^{\top}$. No loss of generality to specify A as ((tower) triangular:• Call blocation contains m spatial regressions $Y_k(s) = \mu_k(s) + w_k(s) + e_k(s), k = 1, ..., m$ • Let $v_k(s) = -\mu(s)(s, t) + e_k(s), k = 1, ..., m$ be m independent GPs with unit variance.• Assume $w(s) = A(s)v(s)$ arises as a space-varying linear transformation of $v(s)$. Then: $C_w(s, t) = A(s)C_w(s, t)/A^{\top}(t)$ • a valid cross-covariance function.• A(s) is ourbownel• A(s) is completely determined from within-site associations.• A(s) is completely determined form within-site associations.• A(s) is completely determined form within-site associations.• Variagram modeling: De lace et al. (Math. Geo., 2003).• Variagram modeling: De lace et al. (Math. Geo., 2003).