Hierarchical Modelling for Spatialtemporal Data

Sudipto Banerjee¹ and Andrew O. Finley²

March 3, 2010

¹ Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

² Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A.

Specification:

- Again point-referenced vs. areal unit data
- Continuous time vs. discretized time

 \Rightarrow association in space, association in time For point-referenced data, t continuous, Gaussian $Y(\mathbf{s},t)=\mu(\mathbf{s},t)+w(\mathbf{s},t)+\epsilon(\mathbf{s},t)$

non-Gaussian data,
$$g(EY(\mathbf{s},t) = \mu(\mathbf{s},t) + w(\mathbf{s},t)$$

Don't treat time as a third coordinate (\mathbf{s} , t)

$$Cov(Y(\mathbf{s},t),Y(\mathbf{s}',t')) = C(\mathbf{s}-\mathbf{s}',t-t')$$

• Separable form:

$$C(\mathbf{s} - \mathbf{s}', t - t') = \sigma^2 \rho_1(\mathbf{s} - \mathbf{s}'; \phi_1) \rho_2(t - t'; \phi_2)$$

Separable form:

$$C(\mathbf{s} - \mathbf{s}', t - t') = \sigma^2 \rho_1(\mathbf{s} - \mathbf{s}'; \boldsymbol{\phi}_1) \rho_2(t - t'; \boldsymbol{\phi}_2)$$

- Nonseparable form:
 - Sum of independent separable processes
 - Mixing of separable covariance functions
 - Spectral domain approaches

• Time discretized, $Y_t(\mathbf{s}), t = 1, 2, ...T$

- Time discretized, $Y_t(\mathbf{s}), t = 1, 2, ...T$
- Type of data: time series or cross-sectional

- Time discretized, $Y_t(\mathbf{s}), t = 1, 2, ...T$
- Type of data: time series or cross-sectional
- For time series data, exploratory analysis:

- Time discretized, $Y_t(\mathbf{s}), t = 1, 2, ...T$
- Type of data: time series or cross-sectional
- For time series data, exploratory analysis:
 - Arrange into an $n \times T$ matrix Y with entries $Y_t(\mathbf{s}_i)$

- Time discretized, $Y_t(\mathbf{s}), t = 1, 2, ...T$
- Type of data: time series or cross-sectional
- For time series data, exploratory analysis:
 - Arrange into an $n \times T$ matrix Y with entries $Y_t(\mathbf{s}_i)$
 - Center by row averages of Y yields Y_{rows}

- Time discretized, $Y_t(\mathbf{s}), t = 1, 2, ...T$
- Type of data: time series or cross-sectional
- For time series data, exploratory analysis:
 - Arrange into an $n \times T$ matrix Y with entries $Y_t(\mathbf{s}_i)$
 - ullet Center by row averages of Y yields Y_{rows}
 - Center by column averages of Y yields Y_{cols}

- Time discretized, $Y_t(\mathbf{s}), t = 1, 2, ...T$
- Type of data: time series or cross-sectional
- For time series data, exploratory analysis:
 - Arrange into an $n \times T$ matrix Y with entries $Y_t(\mathbf{s}_i)$
 - ullet Center by row averages of Y yields Y_{rows}
 - Center by column averages of Y yields Y_{cols}
 - ullet sample spatial covariance matrix: $rac{1}{T}Y_{rows}Y_{rows}^T$

- Time discretized, $Y_t(\mathbf{s}), t = 1, 2, ... T$
- Type of data: time series or cross-sectional
- For time series data, exploratory analysis:
 - Arrange into an $n \times T$ matrix Y with entries $Y_t(\mathbf{s}_i)$
 - ullet Center by row averages of Y yields Y_{rows}
 - ullet Center by column averages of Y yields Y_{cols}
 - ullet sample spatial covariance matrix: $rac{1}{T}Y_{rows}Y_{rows}^T$
 - ullet sample autocorrelation matrix: $rac{1}{n}Y_{cols}^TY_{cols}$

- Time discretized, $Y_t(\mathbf{s}), t = 1, 2, ... T$
- Type of data: time series or cross-sectional
- For time series data, exploratory analysis:
 - Arrange into an $n \times T$ matrix Y with entries $Y_t(\mathbf{s}_i)$
 - ullet Center by row averages of Y yields Y_{rows}
 - ullet Center by column averages of Y yields Y_{cols}
 - ullet sample spatial covariance matrix: $\frac{1}{T}Y_{rows}Y_{rows}^T$
 - ullet sample autocorrelation matrix: $rac{1}{n}Y_{cols}^TY_{cols}$
 - E, residuals matrix after a regression fitting, Empirical orthogonal functions (EOF)

• Modeling: $Y_t(\mathbf{s}) = \mu_t(\mathbf{s}) + w_t(\mathbf{s}) + \epsilon_t(\mathbf{s})$, or perhaps $g(E(Y_t(\mathbf{s})) = \mu_t(\mathbf{s}) + w_t(\mathbf{s})$

- Modeling: $Y_t(\mathbf{s}) = \mu_t(\mathbf{s}) + w_t(\mathbf{s}) + \epsilon_t(\mathbf{s})$, or perhaps $g(E(Y_t(\mathbf{s})) = \mu_t(\mathbf{s}) + w_t(\mathbf{s})$
- For $\epsilon_t(\mathbf{s})$, i.i.d. $N(0, \tau_t^2)$

- Modeling: $Y_t(\mathbf{s}) = \mu_t(\mathbf{s}) + w_t(\mathbf{s}) + \epsilon_t(\mathbf{s})$, or perhaps $g(E(Y_t(\mathbf{s})) = \mu_t(\mathbf{s}) + w_t(\mathbf{s})$
- For $\epsilon_t(\mathbf{s})$, i.i.d. $N(0, \tau_t^2)$
- For $w_t(\mathbf{s})$
 - $w_t(\mathbf{s}) = \alpha_t + w(\mathbf{s})$
 - $w_t(\mathbf{s})$ independent for each t
 - $w_t(\mathbf{s}) = w_{t-1}(\mathbf{s}) + \eta_t(\mathbf{s})$, independent spatial process innovations

Dynamic spatiotemporal models

Measurement Equation

$$\begin{split} Y(\mathbf{s},t) &= \mu(\mathbf{s},t) + \epsilon(\mathbf{s},t); & \ \epsilon(\mathbf{s},t) \stackrel{ind}{\sim} N(0,\sigma_{\epsilon}^2). \\ \mu(\mathbf{s},t) &= \mathbf{x}(\mathbf{s},t)'\tilde{\boldsymbol{\beta}}(\mathbf{s},t). \\ \tilde{\boldsymbol{\beta}}(\mathbf{s},t) &= \boldsymbol{\beta}_t + \boldsymbol{\beta}(\mathbf{s},t) \end{split}$$

Transition Equation

$$\begin{split} \boldsymbol{\beta}_t &= \boldsymbol{\beta}_{t-1} + \boldsymbol{\eta}_t, \ \boldsymbol{\eta}_t \overset{ind}{\sim} N_p(\mathbf{0}, \boldsymbol{\Sigma} \boldsymbol{\eta}) \\ \boldsymbol{\beta}(\mathbf{s}, t) &= \boldsymbol{\beta}(\mathbf{s}, t-1) + \mathbf{w}(\mathbf{s}, t). \end{split}$$

