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Linear regression models: a Bayesian perspective

Ingredients of a linear model include an n× 1 response
vector y = (y1, . . . , yn)T and an n× p design matrix (e.g.
including regressors) X = [x1, . . . ,xp], assumed to have
been observed without error. The linear model:

y = Xβ + ε; ε ∼ N(0, σ2I)

The linear model is the most fundamental of all serious
statistical models encompassing:

ANOVA: y is continuous, xi’s are categorical
REGRESSION: y is continuous, xi’s are continuous
ANCOVA: y is continuous, some xi’s are continuous, some
categorical.

Unknown parameters include the regression parameters β
and the variance σ2. We assume X is observed without
error and all inference is conditional on X.
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Linear regression models: a Bayesian perspective

The classical unbiased estimates of the regression
parameter β and σ2 are

β̂ = (XTX)−1XT y;

σ̂2 =
1

n− p(y−Xβ̂)T (y−Xβ̂).

The above estimate of β is also a least-squares estimate.
The predicted value of y is given by

ŷ = Xβ̂ = PXy where PX = X(XTX)−1XT .

PX is called the projector of X. It projects any vector to the
space spanned by the columns of X.
The model residual is estimated as:

ê = (y−Xβ̂)T (y−Xβ̂) = yT (I − PX)y.
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Bayesian regression with flat reference priors

For Bayesian analysis, we will need to specify priors for the
unknown regression parameters β and the variance σ2.

Consider independent flat priors on β and log σ2:

p(β) ∝ 1; p(log(σ2)) ∝ 1 or equivalently p(β, σ2) ∝ 1
σ2
.

None of the above two “distributions” are valid probabilities
(they do not integrate to any finite number). So why is it
that we are even discussing them?

It turns out that even if the priors are improper (that’s what
we call them), as long as the resulting posterior
distributions are valid we can still conduct legitimate
statistical inference on them.
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Marginal and conditional distributions

With a flat prior on β we obtain, after some algebra, the
conditional posterior distribution:

p(β |σ2,y) = N(β | (XTX)−1XT y, σ2(XTX)−1).

The conditional posterior distribution of β would have been
the desired posterior distribution had σ2 been known.

Since that is not the case, we need to obtain the marginal
posterior distribution by integrating out σ2 as:

p(β | y) =
∫
p(β | σ2,y)p(σ2 | y)dσ2

Can we solve this integration using composition sampling?
YES: if we can generate samples from p(σ2 |y)!
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Marginal and conditional distributions

So, we need to find the marginal posterior distribution of
σ2. With the choice of the flat prior we obtain:

p(σ2 |y) ∝ 1
(σ2)(n−p)/2+1

exp
(
−(n− p)s2

2σ2

)
= IG

(
σ2 | n− p

2
,
(n− p)s2

2

)
,

where s2 = σ̂2 = 1
n−pyT (I − PX)y.

This is known as an inverted Gamma distribution (also
called a scaled chi-square distribution)
IG(σ2 | (n− p)/2, (n− p)s2/2).
In other words: [(n− p)s2/σ2 |y] ∼ χ2

n−p (with n− p
degrees of freedom). A striking similarity with the classical
result: The distribution of σ̂2 is also characterized as
(n− p)s2/σ2 following a chi-square distribution.

6 JSM 2009 Hierarchical Modeling and Analysis



Composition sampling for linear regression

Now we are ready to carry out composittion sampling from
p(β, σ2 |y) as follows:

Draw M samples from p(σ2 |y):

σ2(j) ∼ IG
(
n− p

2
,

(n− p)s2
2

(n− p)
)
, j = 1, . . .M

For j = 1, . . . ,M , draw from p(β |σ2(j),y):

β(j) ∼ N
(

(XTX)−1XT y, σ2(j)(XTX)−1
)

The resulting samples {β(j), σ2(j)}Mj=1 represent M
samples from p(β, σ2 |y).
{β(j)}Mj=1 are samples from the marginal posterior
distribution p(β |y). This is a multivariate t density:

p(β | y) =
Γ(n/2)

(π(n− p))p/2Γ((n− p)/2)|s2(XTX)−1|

"
1 +

(β − β̂)T (XTX)(β − β̂)

(n− p)s2

#−n/2

.

7 JSM 2009 Hierarchical Modeling and Analysis

Composition sampling for linear regression

The marginal distribution of each individual regression
parameter βj is a non-central univariate tn−p distribution.
In fact,

βj − β̂j

s
√

(XTX)−1
jj

∼ tn−p.

The 95% credible intervals for each βj are constructed
from the quantiles of the t-distribution. The credible
intervals exactly coicide with the 95% classical confidence
intervals, but the intepretation is direct: the probability of βj

falling in that interval, given the observed data, is 0.95.

Note: an intercept only linear model reduces to the simple
univariate N(ȳ |µ, σ2/n) likelihood, for which the marginal
posterior of µ is:

µ− ȳ
s/
√
n
∼ tn−1.
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Bayesian predictions from the linear model

Suppose we have observed the new predictors X̃, and we
wish to predict the outcome ỹ. We specify p(ỹ,y |θ) to be a
normal distribution:(

y
ỹ

)
∼ N

([
X

X̃

]
β, σ2I

)
Note p(ỹ |y,β, σ2) = p(ỹ |β, σ2) = N(ỹ | X̃β, σ2I).

The posterior predictive distribution:

p(ỹ |y) =
∫
p(ỹ |y,β, σ2)p(β, σ2 |y)dβdσ2

=
∫
p(ỹ |β, σ2)p(β, σ2 |y)dβdσ2.

By now we are comfortable evaluating such integrals:
First obtain: (β(j), σ2(j)) ∼ p(β, σ2 |y), j = 1, . . . ,M
Next draw: ỹ(j) ∼ N(X̃β(j), σ2(j)I).
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The Gibbs sampler

Suppose that θ = (θ1,θ2) and we seek the posterior
distribution p(θ1,θ2 |y).

For many interesting hierarchical models, we have access
to full conditional distributions p(θ1 |θ2,y) and p(θ1 |θ2,y).

The Gibbs sampler proposes the following sampling
scheme. Set starting values θ(0) = (θ(0)

1 ,θ
(0)
2 ) For

j = 1, . . . ,M
Draw θ

(j)
1 ∼ p(θ1 |θ(j−1)

2 ,y)
Draw θ

(j)
2 ∼ p(θ2 |θ(j)

1 ,y)

This constructs a Markov Chain and, after an initial
“burn-in” period when the chains are trying to find their
way, the above algorithm guarantees that
{θ(j)

1 ,θ
(j)
2 }Mj=M0+1 will be samples from p(θ1,θ2 |y), where

M0 is the burn-in period..
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The Gibbs sampler

More generally, if θ = (θ1, . . . ,θp) are the parameters in
our model, we provide a set of initial values
θ(0) = (θ(0)

1 , . . . ,θ
(0)
p ) and then performs the j-th iteration,

say for j = 1, . . . ,M , by updating successively from the full
conditional distributions:

θ
(j)
1 ∼ p(θ(j)

1 |θ(j−1)
2 , . . . ,θ

(j−1)
p ,y)

θ
(j)
2 ∼ p(θ2 |θ(j)

1 ,θ
(j)
3 , . . . ,θ

(j−1)
p ,y)

. . .
(the generic kth element)
θ

(j)
k ∼ p(θk|θ(j)

1 , . . . ,θ
(j)
k−1,θ

(j)
k+1, . . . ,θ

(j−1)
p ,y)

· · ·
θ

(j)
p ∼ p(θp |θ(j)

1 , . . . ,θ
(j)
p−1,y)
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The Gibbs sampler

Example: Consider the linear model. Suppose we set
p(σ2) = IG(σ2 | a, b) and p(β) ∝ 1.

The full conditional distributions are:

p(β |y, σ2) = N(β | (XTX)−1XT y, σ2(XTX)−1)

p(σ2 |y,β) = IG

(
σ2 | a+ n/2, b+

1
2

(y−Xβ)T (y−Xβ)
)
.

Thus, the Gibbs sampler will initialize (β(0), σ2(0)) and
draw, for j = 1, . . . ,M :

Draw β(j) ∼ N((XTX)−1XT y, σ2(j−1)(XTX)−1)
Draw σ2(j) ∼ IG

(
a+ n/2, b+ 1

2 (y−Xβ(j))T (y−Xβ(j))
)
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The Gibbs sampler

In principle, the Gibbs sampler will work for extremely
complex hierarchical models. The only issue is sampling
from the full conditionals. They may not be amenable to
easy sampling – when these are not in closed form. A
more general and extremely powerful - and often easier to
code - algorithm is the Metropolis-Hastings (MH) algorithm.

This algorithm also constructs a Markov Chain, but does
not necessarily care about full conditionals.
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The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm: Start with a initial value for θ = θ(0).
Select a candidate or proposal distribution from which to propose a
value of θ at the j-th iteration: θ(j) ∼ q(θ(j−1), ν). For example,
q(θ(j−1), ν) = N(θ(j−1), ν) with ν fixed.

Compute

r =
p(θ∗ | y)q(θ(j−1) |θ∗, ν)
p(θ(j−1) | y)q(θ∗ |θ(j−1)ν)

If r ≥ 1 then set θ(j) = θ∗. If r ≤ 1 then draw U ∼ (0, 1). If U ≤ r then
θ(j) = θ∗. Otherwise, θ(j) = θ(j−1).

Repeat for j = 1, . . .M . This yields θ(1), . . . ,θ(M), which, after a
burn-in period, will be samples from the true posterior distribution. It is
important to monitor the acceptance ratio r of the sampler through the
iterations. Rough recommendations: for vector updates r ≈ 20%., for
scalar updates r ≈ 40%. This can be controlled by “tuning” ν.

Popular approach: Embed Metropolis steps within Gibbs to draw from
full conditionals that are not accessible to directly generate from.
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The Metropolis-Hastings algorithm

Example: For the linear model, our parameters are (β, σ2). We write θ = (β, log(σ2)) and, at the j-th
iteration, propose θ∗ ∼ N(θ(j−1),Σ). The log transformation on σ2 ensures that all components of θ
have support on the entire real line and can have meaningful proposed values from the multivariate normal.
But we need to transform our prior to p(β, log(σ2)).

Let z = log(σ2) and assume p(β, z) = p(β)p(z). Let us derive p(z). REMEMBER: we need to adjust
for the jacobian. Then p(z) = p(σ2)|dσ2/dz| = p(ez)ez . The jacobian here is ez = σ2.

Let p(β) = 1 and an p(σ2) = IG(σ2 | a, b). Then log-posterior is:

−(a + n/2 + 1)z + z − 1

ez
{b +

1

2
(Y −Xβ)

T
(Y −Xβ)}.

A symmetric proposal distribution, say q(θ∗|θ(j−1),Σ) = N(θ(j−1),Σ), cancels out in r. In practice
it is better to compute log(r): log(r) = log(p(θ∗ | y)− log(p(θ(j−1) | y)). For the proposal,
N(θ(j−1),Σ), Σ is a d× d variance-covariance matrix, and d = dim(θ) = p + 1.

If log r ≥ 0 then set θ(j) = θ∗. If log r ≤ 0 then draw U ∼ (0, 1). If U ≤ r (or logU ≤ log r) then
θ(j) = θ∗. Otherwise, θ(j) = θ(j−1).

Repeat the above procedure for j = 1, . . .M to obtain samples θ(1), . . . , θ(M).
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