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Bayesian principles

Classical statistics: model parameters are fixed and
unknown.

A Bayesian thinks of parameters as random, and thus
having distributions (just like the data). We can thus think
about unknowns for which no reliable frequentist
experiment exists, e.g. θ = proportion of US men with
untreated prostate cancer.

A Bayesian writes down a prior guess for parameter(s) θ,
say p(θ). He then combines this with the information
provided by the observed data y to obtain the posterior
distribution of θ, which we denote by p(θ |y).

All statistical inferences (point and interval estimates,
hypothesis tests) then follow from posterior summaries. For
example, the posterior means/medians/modes offer point
estimates of θ, while the quantiles yield credible intervals.
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Bayesian principles

The key to Bayesian inference is “learning” or “updating” of
prior beliefs. Thus, posterior information ≥ prior
information.

Is the classical approach wrong? That may be a
controversial statement, but it certainly is fair to say that
the classical approach is limited in scope.

The Bayesian approach expands the class of models and
easily handles:

repeated measures
unbalanced or missing data
nonhomogenous variances
multivariate data

– and many other settings that are precluded (or much
more complicated) in classical settings.
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Basics of Bayesian inference

We start with a model (likelihood) f(y |θ) for the observed
data y = (y1, . . . , yn)′ given unknown parameters θ
(perhaps a collection of several parameters).

Add a prior distribution p(θ |λ), where λ is a vector of
hyper-parameters.

The posterior distribution of θ is given by:

p(θ |y,λ) =
p(θ |λ)× f(y |θ)

p(y |λ)
=

p(θ |λ)× f(y |θ)∫
f(y |θ)p(θ |λ)dθ

.

We refer to this formula as Bayes Theorem.
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Basics of Bayesian inference

Calculations (numerical and algebraic) are usually required
only up to a proportionaly constant. We, therefore, write
the posterior as:

p(θ |y,λ) ∝ p(θ |λ)× f(y |θ).

If λ are known/fixed, then the above represents the desired
posterior. If, however, λ are unknown, we assign a prior,
p(λ), and seek:

p(θ,λ |y) ∝ p(λ)p(θ |λ)f(y |θ).

The proportionality constant does not depend upon θ or λ:
1

p(y)
=

1∫
p(λ)p(θ |λ)f(y |θ)dλdθ

The above represents a joint posterior from a hierarchical
model. The marginal posterior distribution for θ is:

p(θ |y) =
∫
p(λ)p(θ |λ)f(y |θ)dλ.
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Bayesian inference: point estimation

Point estimation is easy: simply choose an appropriate
distribution summary: posterior mean, median or mode.

Mode sometimes easy to compute (no integration, simply
optimization), but often misrepresents the “middle” of the
distribution – especially for one-tailed distributions.

Mean: easy to compute. It has the “opposite effect” of the
mode – chases tails.

Median: probably the best compromise in being robust to
tail behaviour although it may be awkward to compute as it
needs to solve: ∫ θmedian

−∞
p(θ |y)dθ =

1
2
.
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Bayesian inference: interval estimation

The most popular method of inference in practical
Bayesian modelling is interval estimation using credible
sets. A 100(1− α)% credible set C for θ is a set that
satisfies:

P (θ ∈ C |y) =
∫
C
p(θ |y)dθ ≥ 1− α.

The most popular credible set is the simple equal-tail
interval estimate (qL, qU ) such that:∫ qL

−∞
p(θ |y)dθ =

α

2
=
∫ ∞
qU

p(θ |y)dθ

Then clearly P (θ ∈ (qL, qU ) |y) = 1− α.
This interval is relatively easy to compute and has a direct
interpretation: The probability that θ lies between (qL, qU )
is 1− α. The frequentist interpretation is extremely
convoluted.
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A simple example: Normal data and normal priors

Example: Consider a single data point y from a Normal
distribution: y ∼ N(θ, σ2); assume σ is known.

f(y|θ) = N(y | θ, σ2) =
1

σ
√

2π
exp(− 1

2σ2
(y − θ)2)

θ ∼ N(µ, τ2), i.e. p(θ) = N(θ |µ, τ2); µ, τ2 are known.
Posterior distribution of θ

p(θ|y) ∝ N(θ |µ, τ2)×N(y | θ, σ2)

= N

(
θ |

1
τ2

1
σ2 + 1

τ2

µ+
1
σ2

1
σ2 + 1

τ2

y,
1

1
σ2 + 1

τ2

)

= N

(
θ | σ2

σ2 + τ2
µ+

τ2

σ2 + τ2
y,

σ2τ2

σ2 + τ2

)
.
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A simple example: Normal data and normal priors

Interpret: Posterior mean is a weighted mean of prior
mean and data point.
The direct estimate is shrunk towards the prior.
What if you had n observations instead of one in the earlier
set up? Say y = (y1, . . . , yn)′, where yi

iid∼ N(0, σ2).

ȳ is a sufficient statistic for µ; ȳ ∼ N
(
µ, σ

2

n

)
Posterior distribution of θ

p(θ |y) ∝ N(θ |µ, τ2)×N
(
ȳ | θ, σ

2

n

)
= N

(
θ |

1
τ2

n
σ2 + 1

τ2

µ+
n
σ2

n
σ2 + 1

τ2

ȳ,
1

n
σ2 + 1

τ2

)

= N

(
θ | σ2

σ2 + nτ2
µ+

nτ2

σ2 + nτ2
ȳ,

σ2τ2

σ2 + nτ2

)
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Another simple example: The Beta-Binomial model

Example: Let Y be the number of successes in n
independent trials.

P (Y = y|θ) = f(y|θ) =
(
n

y

)
θy(1− θ)n−y

Prior: p(θ) = Beta(θ|a, b):

p(θ) ∝ θa−1(1− θ)b−1.

Prior mean: µ = a/(a+ b); Variance ab/((a+ b)2(a+ b+ 1))
Posterior distribution of θ

p(θ|y) = Beta(θ|a+ y, b+ n− y)
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Sampling-based inference

We will compute the posterior distribution p(θ |y) by
drawing samples from it. This replaces numerical
integration (quadrature) by “Monte Carlo integration”.

One important advantage: we only need to know p(θ |y)
up to the proportionality constant.

Suppose θ = (θ1,θ2) and we know how to sample from
the marginal posterior distribution p(θ2|y) and the
conditional distribution P (θ1 |θ2,y).

How do we draw samples from the joint distribution:
p(θ1,θ2 |y)?
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Sampling-based inference

We do this in two stages using composition sampling:

First draw θ
(j)
2 ∼ p(θ2 |y), j = 1, . . .M .

Next draw θ
(j)
1 ∼ p

(
θ1 |θ(j)

2 ,y
)

.

This sampling scheme produces exact samples,
{θ(j)

1 ,θ
(j)
2 }Mj=1 from the posterior distribution p(θ1,θ2 |y).

Gelfand and Smith (JASA, 1990) demonstrated automatic
marginalization: {θ(j)

1 }Mj=1 are samples from p(θ1 |y) and

(of course!) {θ(j)
2 }Mj=1 are samples from p(θ2 |y).

In effect, composition sampling has performed the
following “integration”:

p(θ1 |y) =
∫
p(θ1 |θ2,y)p(θ2 |y)dθ.

12 JSM 2009 Hierarchical Modeling and Analysis



Bayesian predictions

Suppose we want to predict new observations, say ỹ,
based upon the observed data y. We will specify a joint
probability model p(ỹ,y | ,θ), which defines the conditional
predictive distribution:

p(ỹ |y,θ) =
p(ỹ,y | ,θ)
p(y |θ)

.

Bayesian predictions follow from the posterior predictive
distribution that averages out the θ from the conditional
predictive distribution with respect to the posterior:

p(ỹ |y) =
∫
p(ỹ |y,θ)p(θ |y)dθ.

This can be evaluated using composition sampling:
First obtain: θ(j) ∼ p(θ |y), j = 1, . . .M
For j = 1, . . . ,M sample ỹ(j) ∼ p(ỹ |y,θ(j))

The {ỹ(j)}Mj=1 are samples from the posterior predictive
distribution p(ỹ |y).
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Some remarks on sampling-based inference

Direct Monte Carlo: Some algorithms (e.g. composition sampling) can generate independent samples
exactly from the posterior distribution. In these situations there are NO convergence problems or issues.
Sampling is called exact.

Markov Chain Monte Carlo (MCMC): In general, exact sampling may not be possible/feasible. MCMC is a
far more versatile set of algorithms that can be invoked to fit more general models. Note: anywhere where
direct Monte Carlo applies, MCMC will provide excellent results too.

Convergence issues: There is no free lunch! The power of MCMC comes at a cost. The initial samples do
not necessarily come from the desired posterior distribution. Rather, they need to converge to the true
posterior distribution. Therefore, one needs to assess convergence, discard output before the convergence
and retain only post-convergence samples. The time of convergence is called burn-in.

Diagnosing convergence: Usually a few parallel chains are run from rather different starting points. The
sample values are plotted (called trace-plots) for each of the chains. The time for the chains to “mix”
together is taken as the time for convergence.

Good news! All this is automated in WinBUGS. So, as users, we need to only configure how to specify good
Bayesian models and implement them in WinBUGS.
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