Hierarchical Modelling for Large Spatial Datasets

Sudipto Banerjee1 and Andrew O. Finley2

1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.
2 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A.

July 19, 2009
The Big \(n \) issue

Univariate spatial regression

\[Y = X\beta + w + \epsilon, \]

- Estimation involves \((\sigma^2 R(\phi) + \tau^2 I)^{-1}\), which is \(n \times n \).
- Matrix computations occur in each MCMC iteration.
- Known as the “Big-N problem” in geostatistics.
- Approach: Use a model \(Y = X\beta + Zw^\ast + \epsilon \). But what \(Z \)?
Consider “knots” $\mathcal{S}^* = \{s_1^*, \ldots, s_n^*\}$ with $n^* << n$.

Let $\mathbf{w}^* = \{w(s_i^*)\}_{i=1}^{n^*}$

$\mathbf{Z}(\theta) = \{\text{cov}(w(s_i), w(s_j^*))\}' \{\text{var}(\mathbf{w}^*)\}^{-1}$ is $n \times n^*$.

Predictive process regression model

$$Y = X\beta + \mathbf{Z}(\theta)\mathbf{w}^* + \epsilon,$$

Fitting requires only $n^* \times n^*$ matrix computations ($n^* << n$).

Key attraction: The above arises as a process model:

$\tilde{w}(\mathbf{s}) \sim GP(0, \sigma_w^2 \tilde{\rho}(\cdot; \phi))$ instead of $w(\mathbf{s})$.

$\tilde{\rho}(\mathbf{s}_1, \mathbf{s}_2; \phi) = \text{cov}(w(s_1), \mathbf{w}^*)\text{var}(\mathbf{w}^*)^{-1}\text{cov}(\mathbf{w}^*, w(s_2))$.
Knots: A “Knotty” problem??

- Knot selection: Regular grid? More knots near locations we have sampled more?

- Formal spatial design paradigm: maximize information metrics (Zhu and Stein, 2006; Diggle & Lophaven, 2006)

- Geometric considerations: space-filling designs (Royle & Nychka, 1998); various clustering algorithms

- Compare performance of estimation of range and smoothness by varying knot size.

- Stein (2007, 2008): method may not work for fine-scale spatial data

- Still a popular choice – seamlessly adapts to multivariate and spatiotemporal settings.
Big N problem

Selection of knots

\[\tau^2 \]

\[0 \quad 50 \quad 100 \quad 150 \quad 200 \]

\[0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \]

knots

JSM 2009 Hierarchical Modeling and Analysis
A rectified predictive process is defined as

$$\tilde{w}(s) = \tilde{w}(s) + \tilde{\epsilon}(s)$$

where

$$\tilde{\epsilon}(s) \sim N(0, \sigma_w^2(1 - r(s, \phi)'R^{-1}(\phi)r(s, \phi)))$$

Maximum likelihood estimates of τ^2:

<table>
<thead>
<tr>
<th># of Knots</th>
<th>Predictive Process</th>
<th>Rectified Predictive Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1.56941</td>
<td>1.00786</td>
</tr>
<tr>
<td>36</td>
<td>1.65688</td>
<td>1.15386</td>
</tr>
<tr>
<td>64</td>
<td>1.45169</td>
<td>1.08358</td>
</tr>
<tr>
<td>100</td>
<td>1.37916</td>
<td>1.09657</td>
</tr>
<tr>
<td>225</td>
<td>1.27391</td>
<td>1.08985</td>
</tr>
<tr>
<td>400</td>
<td>1.22429</td>
<td>1.09489</td>
</tr>
<tr>
<td>625</td>
<td>1.21127</td>
<td>1.09998</td>
</tr>
<tr>
<td>exact</td>
<td>1.14414</td>
<td>1.14414</td>
</tr>
</tbody>
</table>
Illustration from:

Univariate random effects models

Quantitative genetics: studies the inheritance of polygenic traits, focusing upon estimation of additive genetic variance, σ_a^2, and the heritability $h^2 = \frac{\sigma_a^2}{\sigma_{Tot}^2}$, where the σ_{Tot}^2 represents the total genetic and unexplained variation.

A high heritability, h^2, should result in a larger selection response (i.e., a higher probability for genetic gain in future generations).
Observed trees

Data overview:

- established in 1971 (by Skogforsk)
- partial diallel design of 52 parent trees
- 8,160 planted randomly on 2.2m squares
- 1997 reinventory of 4,970 surviving trees, height, DBH, branch angle, etc.
Genetic effects model:

\[Y_i = \mathbf{x}_i^T \beta + a_i + d_i + \epsilon_i, \]

- \(\mathbf{a} = [a_i]_{i=1}^n \sim MVN(0, \sigma_a^2 \mathbf{A}) \)
- \(\mathbf{d} = [d_i]_{i=1}^n \sim MVN(0, \sigma_d^2 \mathbf{D}) \)
- \(\epsilon = [\epsilon_i]_{i=1}^n \sim N(0, \tau^2 \mathbf{I}_n) \)

\(\mathbf{A} \) and \(\mathbf{D} \) are fixed relationship matrices (See e.g., Henderson, 1985; Lynch and Walsh, 1998)

Note, genetic variance is further partitioned into additive and the non-additive *dominance* component \(\sigma_d^2 \).
Genetic effects model:

\[Y_i = \mathbf{x}_i^T \beta + a_i + d_i + \epsilon_i, \]

- Common feature is systematic heterogeneity among observational units (i.e., violation of \(\epsilon \sim N(0, \tau^2 I_n) \))

- Spatial heterogeneity arises from:
 - soil characteristics
 - micro-climates
 - light availability

- Residual correlation among units as a function of distance and/or direction = erroneous parameter estimates (e.g., biased \(h^2 \))
Genetic model results

Parameter credible intervals, 50% (2.5%, 97.5%) for the non-spatial models Scots pine trial.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>72.53 (69.66, 75.08)</td>
<td>72.27 (70.04, 74.57)</td>
</tr>
<tr>
<td>σ_a^2</td>
<td>31.94 (18.30, 49.85)</td>
<td>25.23 (14.12, 43.96)</td>
</tr>
<tr>
<td>σ_d^2</td>
<td>–</td>
<td>22.37 (11.24, 40.11)</td>
</tr>
<tr>
<td>τ^2</td>
<td>133.60 (121.18, 144.70)</td>
<td>116.14 (100.51, 127.76)</td>
</tr>
<tr>
<td>h^2</td>
<td>0.19 (0.12, 0.28)</td>
<td>0.15 (0.09, 0.26)</td>
</tr>
</tbody>
</table>
So, $\epsilon \sim N(0, \tau^2 I_n)$. Consider a spatial model.
Previous approaches to accommodating residual spatial dependence:

- **Manipulate the mean function**
 - constructing covariates using residuals from neighboring units (see e.g., Wilkinson et al., 1983; Besag and Kempton, 1986; Williams, 1986)

- **Geostatistical**
 - spatial process formed $AR(1)_{col} \otimes AR(1)_{row}$ (Martin, 1990; Cullis et al., 1998)
 - classical geostatistical method (Zimmerman and Harville, 1991)

All are computationally feasible, but ad hoc and/or restrictive from a modeling perspective.
Spatial model for genetic trials:

$$Y(s_i) = X^T(s_i)\beta + a_i + d_i + w(s_i) + \epsilon_i,$$

- $a = [a_i]_{i=1}^n \sim MVN(0, \sigma_a^2 A)$
- $d = [d_i]_{i=1}^n \sim MVN(0, \sigma_d^2 D)$
- $w = [w(s_i)]_{i=1}^n \sim MVN(0, \sigma_w^2 C(\theta))$
- $\epsilon = [\epsilon_i]_{i=1}^n \sim N(0, \tau^2 I_n)$

Tools used to estimate parameters:

- Markov chain Monte Carlo (MCMC) - iterative
 - Gibbs sampler (β, a, d, w)
 - Metropolis-Hastings and Slice samplers (θ)

Here MCMC is computationally infeasible because of Big-N!
Trick to sample genetic effects:

Gibbs draw for random effects, e.g., $a|\cdot \sim MVN(\mu_{a|\cdot}, \Sigma_{a|\cdot})$, where calculating $\Sigma_{a|\cdot} = \left[\frac{1}{\sigma_a^2} A^{-1} + \frac{I_n}{\tau^2}\right]^{-1}$ is computationally expensive!

However A and D are known, so use initial spectral decomposition i.e., $A^{-1} = P^T \Lambda^{-1} P$.

Thus, $\Sigma_{a|\cdot} = P^T \left(\frac{1}{\sigma_a^2} \Lambda^{-1} + \frac{1}{\tau^2} I\right)^{-1} P$ to achieve computational benefits.
Unfortunately, this *trick* does not work for \mathbf{w}. Rather, we proposed the knot-based *predictive process*.

Corresponding *predictive process* model:

$$Y(s_i) = \mathbf{x}^T(s_i)\beta + a_i + d_i + \tilde{w}(s_i) + \epsilon_i,$$

where,$$
\tilde{w}(s_i) = \mathbf{c}(s_i; \theta)^T C(\theta)^{-1}(\theta)\mathbf{w}^* $$

where, $$\mathbf{w}^* = [w(s^*_i)]_{i=1}^m \sim MVN(\mathbf{0}, C^*(\theta)) \text{ and } C^*(\theta) = [C(s^*_i, s^*_j; \theta)]_{i,j=1}^m$$

![Projection](image1.png)
\(\tilde{w} \) can accommodate complex spatial dependence structures, E.g., anisotropic Matérn correlation function:

\[
\rho(s_i, s_j; \theta) = \left(\frac{1}{\Gamma(\nu)2^{\nu-1}}\right) \left(2\sqrt{\nu d_{ij}}\right)^\nu \kappa_\nu \left(2\sqrt{\nu d_{ij}}\right),
\]

where

\[
d_{ij} = (s_i - s_j)^T \Sigma^{-1} (s_i - s_j), \quad \Sigma = G(\psi) \Lambda^2 G^T(\psi).\]

Thus, \(\theta = (\nu, \psi, \Lambda) \).
Genetic + spatial effects models

- Candidate spatial models (i.e., specifications of $C^*(\theta)$):
 1. $AR(1)_{col} \otimes AR(1)_{row}$
 2. isotropic Matérn
 3. anisotropic Matérn

- Each model evaluated using 64, 144, and 256 knot grids.

- Model choice using Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002)
Table: Model comparisons using the DIC criterion for the Scots pine dataset.

<table>
<thead>
<tr>
<th>Model</th>
<th>p_D</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-spatial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add.</td>
<td>306.40</td>
<td>15,618.09</td>
</tr>
<tr>
<td>Add. Dom.</td>
<td>555.92</td>
<td>15,547.85</td>
</tr>
<tr>
<td>Spatial Isotropic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 Knots</td>
<td>639.77</td>
<td>14,877.51</td>
</tr>
<tr>
<td>144 Knots</td>
<td>739.61</td>
<td>14,814.89</td>
</tr>
<tr>
<td>256 Knots</td>
<td>802.29</td>
<td>14,771.64</td>
</tr>
<tr>
<td>Spatial Anisotropic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 Knots</td>
<td>678.82</td>
<td>14,884.13</td>
</tr>
<tr>
<td>144 Knots</td>
<td>748.89</td>
<td>14,823.90</td>
</tr>
<tr>
<td>256 Knots</td>
<td>806.46</td>
<td>14,781.53</td>
</tr>
</tbody>
</table>
Genetic + spatial effects models results

Parameter credible intervals, 50% (2.5%, 97.5%) for the isotropic Matérn and 64 and 256 knots Scots pine trial.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>64 Knots</th>
<th>256 Knots</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>72.53 (69.00, 76.05)</td>
<td>74.21 (69.66, 79.66)</td>
</tr>
<tr>
<td>σ^2_a</td>
<td>26.87 (17.14, 41.82)</td>
<td>33.03 (18.19, 53.69)</td>
</tr>
<tr>
<td>σ^2_d</td>
<td>11.69 (6.00, 34.27)</td>
<td>13.96 (7.65, 27.05)</td>
</tr>
<tr>
<td>σ^2_w</td>
<td>41.84 (23.71, 73.34)</td>
<td>50.36 (30.24, 88.10)</td>
</tr>
<tr>
<td>τ^2</td>
<td>89.55 (72.11, 99.65)</td>
<td>80.75 (67.90, 96.16)</td>
</tr>
<tr>
<td>ν</td>
<td>0.83 (0.31, 1.46)</td>
<td>0.47 (0.26, 1.28)</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.05 (0.02, 0.09)</td>
<td>0.04 (0.02, 0.09)</td>
</tr>
<tr>
<td>Eff. Range</td>
<td>71.00 (44.66, 127.93)</td>
<td>74.59 (45.22, 129.83)</td>
</tr>
<tr>
<td>h^2</td>
<td>0.21 (0.13, 0.31)</td>
<td>0.25 (0.15, 0.39)</td>
</tr>
</tbody>
</table>

- Decrease in τ^2 due to removal of spatial variation, results in increase in h^2 (i.e., ~ 0.25 vs. ~ 0.15 with confounding).
Genetic + spatial effects models results, cont’d.

Genetic model residuals

\(\tilde{w}(s) \), 64 knots

\(\tilde{w}(s) \), 256 knots

Predictive process – balance model richness with computational feasibility (e.g., \(4,970 \times 4,970 \) vs. \(64 \times 64 \)).
Summary

Challenge - to meet modeling needs:

- ensure computationally feasible
 - reduce algorithmic complexity = cheap tricks (e.g., spectral decomp. of A prior to MCMC)
 - reduce dimensionality = \textit{predictive process}

- maintain richness and flexibility
 - focus on the model \textbf{not} how to estimate the parameters = embrace new tools (MCMC) for estimating highly flexible hierarchical models

- truly acknowledge sources of uncertainty
 - propagate uncertainty through hierarchical structures (e.g., recognize uncertainty in $C(\theta)$)