Hierarchical Modeling for non-Gaussian Spatial Data

Sudipto Banerjee\(^1\) and Andrew O. Finley\(^2\)

\(^1\) Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

\(^2\) Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A.

March 4, 2013
Often data sets preclude Gaussian modelling: $Y(s)$ may not even be continuous

Example: $Y(s)$ is a **binary** or **count** variable

- species presence or absence at location s
- species abundance from count at location s
- continuous forest variable is **high** or **low** at location s

Replace Gaussian likelihood by exponential family member

Diggle Tawn and Moyeed (1998)
First stage: \(Y(s_i)\) are conditionally independent given \(\beta\) and \(w(s_i)\), so \(f(y(s_i)|\beta, w(s_i), \gamma)\) equals

\[
h(y(s_i), \gamma) \exp (\gamma[y(s_i)\eta(s_i) - \psi(\eta(s_i))])
\]

where \(g(E(Y(s_i))) = \eta(s_i) = x^T(s_i)\beta + w(s_i)\) (canonical link function) and \(\gamma\) is a dispersion parameter.

Second stage: Model \(w(s)\) as a Gaussian process:

\[
w \sim N(0, \sigma^2 R(\phi))
\]

Third stage: Priors and hyperpriors.

No process for \(Y(s)\), only a valid joint distribution

Not sensible to add a pure error term \(\epsilon(s)\)
• We are modelling with **spatial random effects**
• Introducing these in the **transformed mean** encourages means of spatial variables at proximate locations to be close to each other
• **Marginal** spatial dependence is **induced** between, say, $Y(s)$ and $Y(s')$, but observed $Y(s)$ and $Y(s')$ need **not** be close to each other
• **Second stage** spatial modelling is attractive for spatial explanation in the **mean**
• **First stage** spatial modelling more appropriate to encourage proximate observations to be close.
Illustration from:

Binary spatial regression: forest/non-forest

We illustrate a non-Gaussian model for point-referenced spatial data:

- Objective is to make pixel-level prediction of forest/non-forest across the domain.

Data: Observations are from 500 georeferenced USDA Forest Service Forest Inventory and Analysis (FIA) inventory plots within a 32 km radius circle in MN, USA. The response $Y(s)$ is a binary variable, with $Y(s) = \begin{cases} 1 & \text{if inventory plot is forested} \\ 0 & \text{if inventory plot is not forested} \end{cases}$.

Observed covariates include the coinciding pixel values for 3 dates of 30×30 m resolution Landsat imagery.
We illustrate a non-Gaussian model for point-referenced spatial data:

- Objective is to make pixel-level prediction of forest/non-forest across the domain.
- **Data**: Observations are from 500 georeferenced USDA Forest Service Forest Inventory and Analysis (FIA) inventory plots within a 32 km radius circle in MN, USA.
- The response $Y(s)$ is a binary variable, with

$$Y(s) = \begin{cases} 1 & \text{if inventory plot is forested} \\ 0 & \text{if inventory plot is not forested} \end{cases}$$
Binary spatial regression: forest/non-forest

We illustrate a non-Gaussian model for point-referenced spatial data:

- **Objective**: is to make pixel-level prediction of forest/non-forest across the domain.
- **Data**: Observations are from 500 georeferenced USDA Forest Service Forest Inventory and Analysis (FIA) inventory plots within a 32 km radius circle in MN, USA.
- The response $Y(s)$ is a binary variable, with

 $$Y(s) = \begin{cases}
 1 & \text{if inventory plot is forested} \\
 0 & \text{if inventory plot is not forested}
 \end{cases}$$

- Observed covariates include the coinsiding pixel values for 3 dates of 30×30 m resolution Landsat imagery.
Binary spatial regression: forest/non-forest

- We fit a generalized linear model where
 \[Y(s_i) \sim \text{Bernoulli}(p(s_i)), \quad \text{logit}(p(s_i)) = x^T(s_i)\beta + w(s_i). \]
Binary spatial regression: forest/non-forest

- We fit a generalized linear model where
 \[Y(s_i) \sim Bernoulli(p(s_i)), \quad \text{logit}(p(s_i)) = x^T(s_i)\beta + w(s_i). \]

- Assume vague flat for \(\beta \), a Uniform\((3/32, 3/0.5)\) prior for \(\phi \), and an inverse-Gamma\((2, \cdot)\) prior for \(\sigma^2 \).
Binary spatial regression: forest/non-forest

- We fit a generalized linear model where
 \[Y(s_i) \sim \text{Bernoulli}(p(s_i)), \quad \text{logit}(p(s_i)) = x^T(s_i)\beta + w(s_i). \]

- Assume vague flat for \(\beta \), a Uniform\((3/32, 3/0.5)\) prior for \(\phi \), and an inverse-Gamma\((2, \cdot)\) prior for \(\sigma^2 \).

- Parameters updated with Metropolis algorithm using target log density:

 \[
 \ln \left(p(\Omega \mid Y) \right) \propto \\
 - \left(\sigma_a + 1 + \frac{n}{2} \right) \ln (\sigma^2) - \frac{\sigma_b}{\sigma^2} - \frac{1}{2} \ln (||R(\phi)||) - \frac{1}{2\sigma^2} w^T R(\phi)^{-1} w \\
 + \sum_{i=1}^{n} Y(s_i) \left(x^T(s_i)\beta + w(s_i) \right) - \sum_{i=1}^{n} \ln \left(1 + \exp(x^T(s_i)\beta + w(s_i)) \right) \\
 + \ln(\sigma^2) + \ln(\phi - \phi_a) + \ln(\phi_b - \phi).
 \]
Posterior parameter estimates

Parameter estimates (posterior medians and upper and lower 2.5 percentiles):

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Estimates: 50% (2.5%, 97.5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept (θ_0)</td>
<td>82.39 (49.56, 120.46)</td>
</tr>
<tr>
<td>AprilTC1 (θ_1)</td>
<td>-0.27 (-0.45, -0.11)</td>
</tr>
<tr>
<td>AprilTC2 (θ_2)</td>
<td>0.17 (0.07, 0.29)</td>
</tr>
<tr>
<td>AprilTC3 (θ_3)</td>
<td>-0.24 (-0.43, -0.08)</td>
</tr>
<tr>
<td>JulyTC1 (θ_4)</td>
<td>-0.04 (-0.25, 0.17)</td>
</tr>
<tr>
<td>JulyTC2 (θ_5)</td>
<td>0.09 (-0.01, 0.19)</td>
</tr>
<tr>
<td>JulyTC3 (θ_6)</td>
<td>0.01 (-0.15, 0.16)</td>
</tr>
<tr>
<td>OctTC1 (θ_7)</td>
<td>-0.43 (-0.68, -0.22)</td>
</tr>
<tr>
<td>OctTC2 (θ_8)</td>
<td>-0.03 (-0.19, 0.14)</td>
</tr>
<tr>
<td>OctTC3 (θ_9)</td>
<td>-0.26 (-0.46, -0.07)</td>
</tr>
<tr>
<td>σ^2</td>
<td>1.358 (0.39, 2.42)</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.00182 (0.00065, 0.0032)</td>
</tr>
<tr>
<td>log(0.05)/ϕ (meters)</td>
<td>1644.19 (932.33, 4606.7)</td>
</tr>
</tbody>
</table>

Covariates and proximity to observed FIA plot will contribute to increase precision of prediction.
Median of posterior predictive distributions
97.5%-2.5% range of posterior predictive distributions
CDF of holdout area’s posterior predictive distributions

Classification of 15 20×20 pixel areas (based on visual inspection of imagery) into non-forest (●), moderately forest (○), and forest (no marker).