Hierarchical Modeling for Multivariate Spatial Data

Sudipto Banerjee1 and Andrew O. Finley2

1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

2 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A.

March 4, 2013
Point-referenced spatial data often come as multivariate measurements at each location.
Point-referenced spatial data often come as multivariate measurements at each location.

Examples:
- Environmental monitoring: stations yield measurements on ozone, NO, CO, and PM$_{2.5}$.
Point-referenced spatial data often come as multivariate measurements at each location.

Examples:

- **Environmental monitoring**: stations yield measurements on ozone, NO, CO, and PM$_{2.5}$.
- **Community ecology**: assemblages of plant species due to water availability, temperature, and light requirements.
Point-referenced spatial data often come as **multivariate measurements** at each location.

Examples:
- **Environmental monitoring:** stations yield measurements on ozone, NO, CO, and PM$_{2.5}$.
- **Community ecology:** assemblages of plant species due to water availability, temperature, and light requirements.
- **Forestry:** measurements of stand characteristics age, total biomass, and average tree diameter.
Point-referenced spatial data often come as multivariate measurements at each location.

Examples:
- **Environmental monitoring**: stations yield measurements on ozone, NO, CO, and PM$_{2.5}$.
- **Community ecology**: assemblies of plant species due to water availability, temperature, and light requirements.
- **Forestry**: measurements of stand characteristics age, total biomass, and average tree diameter.
- **Atmospheric modeling**: at a given site we observe surface temperature, precipitation, and wind speed.
Point-referenced spatial data often come as multivariate measurements at each location.

Examples:
- **Environmental monitoring**: stations yield measurements on ozone, NO, CO, and PM$_{2.5}$.
- **Community ecology**: assemblages of plant species due to water availability, temperature, and light requirements.
- **Forestry**: measurements of stand characteristics age, total biomass, and average tree diameter.
- **Atmospheric modeling**: at a given site we observe surface temperature, precipitation and wind speed.

We anticipate dependence between measurements.
Point-referenced spatial data often come as multivariate measurements at each location.

Examples:

- **Environmental monitoring**: stations yield measurements on ozone, NO, CO, and PM\(_{2.5}\).
- **Community ecology**: assemblages of plant species due to water availability, temperature, and light requirements.
- **Forestry**: measurements of stand characteristics age, total biomass, and average tree diameter.
- **Atmospheric modeling**: at a given site we observe surface temperature, precipitation and wind speed.

We anticipate dependence between measurements at a particular location.
Point-referenced spatial data often come as multivariate measurements at each location.

Examples:

- **Environmental monitoring**: stations yield measurements on ozone, NO, CO, and PM$_{2.5}$.
- **Community ecology**: assemblages of plant species due to water availability, temperature, and light requirements.
- **Forestry**: measurements of stand characteristics age, total biomass, and average tree diameter.
- **Atmospheric modeling**: at a given site we observe surface temperature, precipitation and wind speed

We anticipate dependence between measurements

- at a particular location
- across locations
Each location contains m spatial regressions

$$Y_k(s) = \mu_k(s) + w_k(s) + \epsilon_k(s), \quad k = 1, \ldots, m.$$

- **Mean:** $\mu(s) = [\mu_k(s)]_{k=1}^m = [x_k^T(s)\beta_k]_{k=1}^m$
- **Cov:** $w(s) = [w_k(s)]_{k=1}^m \sim MVGP(0, \Gamma_w(\cdot, \cdot))$

$$\Gamma_w(s, s') = [Cov(w_k(s), w_{k'}(s'))]_{k,k'=1}^m$$
- **Error:** $\epsilon(s) = [\epsilon_k(s)]_{k=1}^m \sim MVN(0, \Psi)$

Ψ is an $m \times m$ p.d. matrix, e.g. usually $\text{Diag}(\tau_k^2)_{k=1}^m$.

τ_k^2
Multivariate spatial modelling

- \(\mathbf{w}(\mathbf{s}) \sim MVGP(\mathbf{0}, \Gamma_w(\cdot)) \) with

\[
\Gamma_w(\mathbf{s}, \mathbf{s}') = \left[Cov(w_k(\mathbf{s}), w_{k'}(\mathbf{s}')) \right]_{k,k'=1}^m
\]

- **Example:** with \(m = 2 \)

\[
\Gamma_w(\mathbf{s}, \mathbf{s}') = \begin{pmatrix}
Cov(w_1(\mathbf{s}), w_1(\mathbf{s}')) & Cov(w_1(\mathbf{s}), w_2(\mathbf{s}')) \\
Cov(w_2(\mathbf{s}), w_1(\mathbf{s}')) & Cov(w_2(\mathbf{s}), w_2(\mathbf{s}'))
\end{pmatrix}
\]

- For finite set of locations \(\mathcal{S} = \{\mathbf{s}_1, \ldots, \mathbf{s}_n\} \):

\[
\text{Var} \left(\left[\mathbf{w}(\mathbf{s}_i) \right]_{i=1}^n \right) = \Sigma_w = \left[\Gamma_w(\mathbf{s}_i, \mathbf{s}_j) \right]_{i,j=1}^n
\]
Properties:

- \(\Gamma_w(s', s) = \Gamma_w^{T}(s, s') \)
- \(\lim_{s \to s'} \Gamma_w(s, s') \) is p.d. and \(\Gamma_w(s, s) = Var(w(s)) \).
- For sites in any finite collection \(\mathcal{S} = \{s_1, \ldots, s_n\} \):
 \[
 \sum_{i=1}^{n} \sum_{j=1}^{n} u_i^T \Gamma_w(s_i, s_j) u_j \geq 0 \quad \text{for all } u_i, u_j \in \mathbb{R}^m.
 \]

Any valid \(\Gamma_w \) must satisfy the above conditions.

The last property implies that \(\Sigma_w \) is p.d.

In complete generality:

- \(\Gamma_w(s, s') \) need not be symmetric.
- \(\Gamma_w(s, s') \) need not be p.d. for \(s \neq s' \).
Moving average or kernel convolution of a process:
- Let $Z(s) \sim GP(0, \rho(\cdot))$. Use kernels to form:

$$w_j(s) = \int \kappa_j(u)Z(s + u)du = \int \kappa_j(s - s')Z(s')ds'$$

- $\Gamma_w(s - s')$ has (i, j)-th element:

$$[\Gamma_w(s - s')]_{i,j} = \int \int \kappa_i(s - s' + u)\kappa_j(u')\rho(u - u')du du'$$

Convolution of Covariance Functions:
- $\rho_1, \rho_2, \ldots, \rho_m$ are valid covariance functions. Form:

$$[\Gamma_w(s - s')]_{i,j} = \int \rho_i(s - s' - t)\rho_j(t)dt.$$
Constructive approach

- Let $v_k(s) \sim GP(0, \rho_k(s, s'))$, for $k = 1, \ldots, m$ be m independent GP’s with unit variance.
- Form the simple multivariate process $v(s) = [v_k(s)]_{k=1}^m$:
 \[v(s) \sim MVGP(0, \Gamma_v(\cdot, \cdot)) \]
 with $\Gamma_v(s, s') = Diag(\rho_k(s, s'))_{k=1}^m$.
- Assume $w(s) = A(s)v(s)$ arises as a space-varying linear transformation of $v(s)$. Then:
 \[\Gamma_w(s, s') = A(s)\Gamma_v(s, s')A^T(s') \]
 is a valid cross-covariance function.
Constructive approach, contd.

- When $\mathbf{s} = \mathbf{s}'$, $\Gamma_v(\mathbf{s}, \mathbf{s}) = I_m$, so:

$$
\Gamma_w(\mathbf{s}, \mathbf{s}) = A(\mathbf{s})A^T(\mathbf{s})
$$

- $A(\mathbf{s})$ identifies with any square-root of $\Gamma_w(\mathbf{s}, \mathbf{s})$. Can be taken as lower-triangular (Cholesky).

- $A(\mathbf{s})$ is unknown!
 - Should we first model $A(\mathbf{s})$ to obtain $\Gamma_w(\mathbf{s}, \mathbf{s})$?
 - Or should we model $\Gamma_w(\mathbf{s}, \mathbf{s}')$ first and derive $A(\mathbf{s})$?
 - $A(\mathbf{s})$ is completely determined from within-site associations.
Constructive approach, contd.

- If $A(s) = A$:
 - $w(s)$ is stationary when $v(s)$ is.
 - $\Gamma_w(s, s')$ is symmetric.
 - $\Gamma_v(s, s') = \rho(s, s')I_m \Rightarrow \Gamma_w = \rho(s, s')AA^T$

- Last specification is called **intrinsic** and leads to **separable** models:
 \[
 \Sigma_w = H(\phi) \otimes \Lambda; \quad \Lambda = AA^T
 \]
Let $y = [Y(s_i)]_{i=1}^n$ and $w = [W(s_i)]_{i=1}^n$.

First stage:

$$y \mid \beta, w, \Psi \sim \prod_{i=1}^n MVN(Y(s_i) \mid X(s_i)^T \beta + w(s_i), \Psi)$$
Let $y = [Y(s_i)]_{i=1}^n$ and $w = [W(s_i)]_{i=1}^n$.

First stage:

$$y | \beta, w, \Psi \sim \prod_{i=1}^n MVN \left(Y(s_i) | X(s_i)^T \beta + w(s_i), \Psi \right)$$

Second stage:

$$w | \theta \sim MVN(0, \Sigma_w(\Phi))$$

where $\Sigma_w(\Phi) = [\Gamma_w(s_i, s_j; \Phi)]_{i,j=1}^n$.
Let \(y = [Y(s_i)]_{i=1}^n \) and \(w = [W(s_i)]_{i=1}^n \).

First stage:

\[
y \mid \beta, w, \Psi \sim \prod_{i=1}^{n} MVN \left(Y(s_i) \mid X(s_i)^T \beta + w(s_i), \Psi \right)
\]

Second stage:

\[
w \mid \theta \sim MVN(0, \Sigma_w(\Phi))
\]

where \(\Sigma_w(\Phi) = [\Gamma_w(s_i, s_j; \Phi)]_{i,j=1}^n \).

Third stage: Priors on \(\Omega = (\beta, \Psi, \Phi) \).
Let \(y = \left[Y(s_i) \right]_{i=1}^{n} \) and \(w = \left[W(s_i) \right]_{i=1}^{n} \).

First stage:

\[
y \mid \beta, w, \Psi \sim \prod_{i=1}^{n} \text{MVN} \left(Y(s_i) \mid X(s_i)^T \beta + w(s_i), \Psi \right)
\]

Second stage:

\[
w \mid \theta \sim \text{MVN}(0, \Sigma_w(\Phi))
\]

where \(\Sigma_w(\Phi) = \left[\Gamma_w(s_i, s_j; \Phi) \right]_{i,j=1}^{n} \).

Third stage: Priors on \(\Omega = (\beta, \Psi, \Phi) \).

Marginalized likelihood:

\[
y \mid \beta, \theta, \Psi \sim \text{MVN}(X\beta, \Sigma_w(\Phi) + I \otimes \Psi)
\]
Choice: Fit as $[y|\Omega] \times [\omega]$ or as $[y|\beta, w, \Psi] \times [w|\Phi] \times [\omega]$.
Choice: Fit as \([y|\Omega] \times [\Omega]\) or as \([y|\beta, w, \Psi] \times [w|\Phi] \times [\Omega]\).

Conditional model:
- Conjugate distributions are available for \(\Psi\) and other variance parameters. Easy to program.
Choice: Fit as $[y|\Omega] \times [\Omega]$ or as $[y|\beta, w, \Psi] \times [w|\Phi] \times [\Omega]$.

Conditional model:
- Conjugate distributions are available for Ψ and other variance parameters. Easy to program.

Marginalized model:
- need Metropolis or Slice sampling for most variance-covariance parameters. Harder to program.
- But reduced parameter space (no w's) results in faster convergence
- $\Sigma_w(\Phi) + I \otimes \Psi$ is more stable than $\Sigma_w(\Phi)$.

$\Sigma_w(\Phi)$ is more stable than $\Sigma_w(\Phi)$. Matrix inversion is EXPENSIVE $O(n^3)$.

But what about $\Sigma_w^{-1}(\Phi)$? Matrix inversion is EXPENSIVE $O(n^3)$.

11 NEON Applied Bayesian Regression Spatio-temporal Workshop
Choice: Fit as \([y|\Omega] \times [\Omega]\) or as \([y|\beta, w, \Psi] \times [w|\Phi] \times [\Omega]\).

Conditional model:
- Conjugate distributions are available for \(\Psi\) and other variance parameters. Easy to program.

Marginalized model:
- need Metropolis or Slice sampling for most variance-covariance parameters. Harder to program.
- But reduced parameter space (no \(w\)'s) results in faster convergence
- \(\Sigma_w(\Phi) + I \otimes \Psi\) is more stable than \(\Sigma_w(\Phi)\).

But what about \(\Sigma_w^{-1}(\Phi)\)?? Matrix inversion is EXPENSIVE \(O(n^3)\).
Recovering the w’s?

- Interest often lies in the spatial surface $w|y$.

NOTE: With Gaussian likelihoods $[w|\Omega, y, X]$ is also Gaussian. With other likelihoods this may not be easy and often the conditional updating scheme is preferred.
Recovering the w's?

- Interest often lies in the spatial surface $w|y$.
- They are recovered from

$$[w|y, X] = \int [w|\Omega, y, X] \times [\Omega|y, X] d\Omega$$

using posterior samples:
Recovering the w’s?

- Interest often lies in the spatial surface $w|y$.
- They are recovered from

$$[w|y, X] = \int [w|\Omega, y, X] \times [\Omega|y, X] d\Omega$$

using posterior samples:
 - Obtain $\Omega^{(1)}, \ldots, \Omega^{(G)} \sim [\Omega|y, X]$
Recovering the \(w \)'s?

- Interest often lies in the spatial surface \(w|y \).
- They are recovered from

\[
[w|y, X] = \int [w|\Omega, y, X] \times [\Omega|y, X] d\Omega
\]

using posterior samples:

- Obtain \(\Omega^{(1)}, \ldots, \Omega^{(G)} \sim [\Omega|y, X] \)
- For each \(\Omega^{(g)} \), draw \(w^{(g)} \sim [w|\Omega^{(g)}, y, X] \)

NOTE: With Gaussian likelihoods \([w|\Omega, y, X]\) is also Gaussian. With other likelihoods this may not be easy and often the conditional updating scheme is preferred.
Recovering the w's?

- Interest often lies in the spatial surface $w|y$.
- They are recovered from

$$[w|y, X] = \int [w|\Omega, y, X] \times [\Omega|y, X] d\Omega$$

using posterior samples:

- Obtain $\Omega^{(1)}, \ldots, \Omega^{(G)} \sim [\Omega|y, X]$
- For each $\Omega^{(g)}$, draw $w^{(g)} \sim [w|\Omega^{(g)}, y, X]$

NOTE: With Gaussian likelihoods $[w|\Omega, y, X]$ is also Gaussian. With other likelihoods this may not be easy and often the conditional updating scheme is preferred.
Often we need to predict \(Y(\mathbf{s}) \) at a new set of locations \{\mathbf{\tilde{s}}_0, \ldots, \mathbf{\tilde{s}}_m\} with associated predictor matrix \(\mathbf{\tilde{X}} \).

Sample from predictive distribution:

\[
[\mathbf{\tilde{y}} | \mathbf{y}, \mathbf{X}, \mathbf{\tilde{X}}] = \int [\mathbf{\tilde{y}}, \Omega | \mathbf{y}, \mathbf{X}, \mathbf{\tilde{X}}] d\Omega = \int [\mathbf{\tilde{y}} | \mathbf{y}, \Omega, \mathbf{X}, \mathbf{\tilde{X}}] \times [\Omega | \mathbf{y}, \mathbf{X}] d\Omega,
\]

\([\mathbf{\tilde{y}} | \mathbf{y}, \Omega, \mathbf{X}, \mathbf{\tilde{X}}] \) is multivariate normal. Sampling scheme:

- Obtain \(\Omega^{(1)}, \ldots, \Omega^{(G)} \sim [\Omega | \mathbf{y}, \mathbf{X}] \)
- For each \(\Omega^{(g)} \), draw \(\mathbf{\tilde{y}}^{(g)} \sim [\mathbf{\tilde{y}} | \mathbf{y}, \Omega^{(g)}, \mathbf{X}, \mathbf{\tilde{X}}] \).
Illustration from:

Slight digression – why we fit a model:

- Association between response and covariates, β, (e.g., ecological interpretation)

- Residual spatial and/or non-spatial associations and patterns (i.e., given covariates)

- Subsequent prediction
Study objectives:

- Evaluate methods for multi-source forest attribute mapping
- Find the “best” model, given the data
- Produce maps of biomass and uncertainty, by tree species
Study objectives:

- Evaluate methods for multi-source forest attribute mapping
- Find the “best” model, given the data
- Produce maps of biomass and uncertainty, by tree species

Study area:

- USDA FS Bartlett Experimental Forest (BEF), NH
- 1,053 ha heavily forested
- Major tree species: American beech (BE), eastern hemlock (EH), red maple (RM), sugar maple (SM), and yellow birch (YB)
Bartlett Experimental Forest

Image provided by www.fs.fed.us/ne/durham/4155/bartlett
Response variables:

- Metric tons of total tree biomass per ha
- Measured on 437 \(\frac{1}{10} \) ha plots
- Models fit using random subset of 218 plots
- Prediction at remaining 219 plots
Covariates

- DEM derived elevation and slope
- Spring, Summer, Fall Landsat ETM+ Tasseled Cap features (brightness, greeness, wetness)
Candidate models

Each model includes 55 covariates and 5 intercepts, therefore, X^T is 1090×60.
Candidate models

Each model includes 55 covariates and 5 intercepts, therefore, X^T is 1090×60.

Different specifications of variance structures:

- Non-spatial multivariate $\text{Diag}(\Psi) = \tau^2$
Candidate models

Each model includes 55 covariates and 5 intercepts, therefore, \(X^T \) is 1090 \(\times \) 60.

Different specifications of variance structures:

1. Non-spatial multivariate \(\text{Diag}(\Psi) = \tau^2 \)

2. \(\text{Diag}(K) \), same \(\phi \), \(\text{Diag}(\Psi) \)
Candidate models

Each model includes 55 covariates and 5 intercepts, therefore, X^T is 1090×60.

Different specifications of variance structures:

1. **Non-spatial multivariate** $Diag(\Psi) = \tau^2$

2. $Diag(K)$, same ϕ, $Diag(\Psi)$

3. K, same ϕ, $Diag(\Psi)$
Candidate models

Each model includes 55 covariates and 5 intercepts, therefore, \(X^T \) is \(1090 \times 60 \).

Different specifications of variance structures:

1. Non-spatial multivariate \(\text{Diag}(\Psi) = \tau^2 \)
2. \(\text{Diag}(K) \), same \(\phi \), \(\text{Diag}(\Psi) \)
3. \(K \), same \(\phi \), \(\text{Diag}(\Psi) \)
4. \(\text{Diag}(K) \), different \(\phi \), \(\text{Diag}(\Psi) \)
Candidate models

Each model includes 55 covariates and 5 intercepts, therefore, X^T is 1090×60.

Different specifications of variance structures:

1. Non-spatial multivariate $Diag(\Psi) = \tau^2$

2. $Diag(K)$, same ϕ, $Diag(\Psi)$

3. K, same ϕ, $Diag(\Psi)$

4. $Diag(K)$, different ϕ, $Diag(\Psi)$

5. K, different ϕ, $Diag(\Psi)$
Candidate models

Each model includes 55 covariates and 5 intercepts, therefore, X^T is 1090×60.

Different specifications of variance structures:

1. Non-spatial multivariate $\text{Diag}(\Psi) = \tau^2$

2. $\text{Diag}(K)$, same ϕ, $\text{Diag}(\Psi)$

3. K, same ϕ, $\text{Diag}(\Psi)$

4. $\text{Diag}(K)$, different ϕ, $\text{Diag}(\Psi)$

5. K, different ϕ, $\text{Diag}(\Psi)$

6. K, different ϕ, Ψ
Model comparison

Deviance Information Criterion (DIC):

\[D(\Omega) = -2 \log L(Data|\Omega) \]

\[\overline{D}(\Omega) = \mathbb{E}_{\Omega|Y}[D(\Omega)] \]

\[p_D = \overline{D}(\Omega) - D(\bar{\Omega}); \quad \bar{\Omega} = \mathbb{E}_{\Omega|Y}[\Omega] \]

\[DIC = \overline{D}(\Omega) + p_D. \]

Lower DIC is better.
Model comparison

Deviance Information Criterion (DIC):

\[D(\Omega) = -2 \log L(Data \mid \Omega) \]

\[D(\Omega) = E_{\Omega \mid Y}[D(\Omega)] \]

\[p_D = D(\Omega) - D(\bar{\Omega}); \quad \bar{\Omega} = E_{\Omega \mid Y}[\Omega] \]

\[DIC = D(\Omega) + p_D. \]

Lower DIC is better.

<table>
<thead>
<tr>
<th>Model</th>
<th>p_D</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35</td>
<td>8559</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>8543</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>8521</td>
</tr>
<tr>
<td>4</td>
<td>33</td>
<td>8536</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
<td>8505</td>
</tr>
<tr>
<td>6</td>
<td>38</td>
<td>8507</td>
</tr>
</tbody>
</table>
Selected model

- Model 5: \(K \), different \(\phi \), \(\text{Diag}(\Psi) \)
- Parameters: \(K = 15 \), \(\phi = 5 \), \(\text{Diag}(\Psi) = 5 \)
Selected model

- Model 5: K, different ϕ, $Diag(\Psi)$
- Parameters: $K = 15$, $\phi = 5$, $Diag(\Psi) = 5$

Focus on spatial cross-covariance matrix K (for brevity).

Posterior inference of $\text{cor}(K)$, e.g., 50 (2.5, 97.5) percentiles:

<table>
<thead>
<tr>
<th></th>
<th>BE</th>
<th>EH</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>1</td>
<td></td>
<td>…</td>
</tr>
<tr>
<td>EH</td>
<td>0.16 (0.13, 0.21)</td>
<td>1</td>
<td>…</td>
</tr>
<tr>
<td>RM</td>
<td>-0.20 (-0.23, -0.15)</td>
<td>0.45 (0.26, 0.66)</td>
<td>…</td>
</tr>
<tr>
<td>SM</td>
<td>-0.20 (-0.22, -0.17)</td>
<td>-0.12 (-0.16, -0.09)</td>
<td>…</td>
</tr>
<tr>
<td>YB</td>
<td>0.07 (0.04, 0.08)</td>
<td>0.22 (0.20, 0.25)</td>
<td>…</td>
</tr>
</tbody>
</table>

These relationships expressed in mapped random spatial effects, w.
Selected model

- Model 5: K, different ϕ, $Diag(\Psi)$
- Parameters: $K = 15$, $\phi = 5$, $Diag(\Psi) = 5$

Focus on spatial cross-covariance matrix K (for brevity).

Posterior inference of $\text{cor}(K)$, e.g., 50 (2.5, 97.5) percentiles:

<table>
<thead>
<tr>
<th></th>
<th>BE</th>
<th>EH</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EH</td>
<td>0.16 (0.13, 0.21)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RM</td>
<td>-0.20 (-0.23, -0.15)</td>
<td>0.45 (0.26, 0.66)</td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>-0.20 (-0.22, -0.17)</td>
<td>-0.12 (-0.16, -0.09)</td>
<td></td>
</tr>
<tr>
<td>YB</td>
<td>0.07 (0.04, 0.08)</td>
<td>0.22 (0.20, 0.25)</td>
<td></td>
</tr>
</tbody>
</table>

These relationships expressed in mapped random spatial effects, w.
\[E[\mathbf{w} | \text{Data}] \]
\[E[Y^* | \text{Data}] \]
$E[Y^* | Data]$

$P(2.5 < Y^* < 97.5 | Data)$
Summary

Proposed Bayesian hierarchical spatial methodology:
 - Partition sources of uncertainty
 - Provides hypothesis testing
 - Reveal spatial patterns and missing covariates
Summary

Proposed Bayesian hierarchical spatial methodology:

- Partition sources of uncertainty
 - Provides hypothesis testing
 - Reveal spatial patterns and missing covariates

- Allow flexible inference
 - Access parameters’ posterior distribution
 - Access posterior predictive distribution
Summary

Proposed Bayesian hierarchical spatial methodology:
- Partition sources of uncertainty
 - Provides hypothesis testing
 - Reveal spatial patterns and missing covariates
- Allow flexible inference
 - Access parameters’ posterior distribution
 - Access posterior predictive distribution
- Provide consistent prediction of multiple variables
 - Maintains spatial and non-spatial association
Summary

Proposed Bayesian hierarchical spatial methodology:
- Partition sources of uncertainty
 - Provides hypothesis testing
 - Reveal spatial patterns and missing covariates
- Allow flexible inference
 - Access parameters’ posterior distribution
 - Access posterior predictive distribution
- Provide consistent prediction of multiple variables
 - Maintains spatial and non-spatial association

Extendable model template:
- Cluster plot sample design – multiresolution models
- Non-continuous response – general linear models
- Obs. over time and space – spatiotemporal models