Hierarchical Modelling for Large Spatial Datasets

Sudipto Banerjee¹ and Andrew O. Finley²

¹ Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.
² Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A.

March 4, 2013

Big N problem

Introduction

Comparisons: Unrectified VS Rectified

Univariate spatial regression

Y = Xβ + w + ϵ,

- Estimation involves (σ²R(φ) + τ²I)⁻¹, which is n × n.
- Matrix computations occur in each MCMC iteration.
- Known as the “Big-N problem” in geostatistics.
- Approach: Use a model Y = Xβ + Zw* + ϵ. But what Z?

Hierarchical Modelling for Large Spatial Datasets

Sudipto Banerjee¹ and Andrew O. Finley²

¹ Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.
² Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A.

March 4, 2013

Knots: A “Knotty” problem??

- Knot selection: Regular grid? More knots near locations we have sampled more?
- Formal spatial design paradigm: maximize information metrics (Zhu and Stein, 2006; Diggle & Lophaven, 2006)
- Geometric considerations: space-filling designs (Royle & Nychka, 1998); various clustering algorithms
- Compare performance of estimation of range and smoothness by varying knot size.
- Stein (2007, 2008): method may not work for fine-scale spatial data
- Still a popular choice – seamlessly adapts to multivariate and spatiotemporal settings.

Predictive process regression model

Y = Xβ + Z(θ)w* + ϵ,

- Fitting requires only n* × n* matrix computations (n* << n).
- Key attraction: The above arises as a process model:
 \(\tilde{w}(s) \sim GP(0, \sigma^2_\epsilon \tilde{\rho}(\cdot; \phi)) \) instead of \(w(s) \).
 \(\tilde{\rho}(s_1, s_2; \phi) = cov(w(s_1), w(s_2)) \) instead of \(\rho(s_1, s_2) \).

A rectified predictive process is defined as

\(\tilde{w}_l(s) = \tilde{w}(s) + \tilde{\epsilon}(s) \),

where

\(\tilde{\epsilon}(s) \overset{ind}{\sim} N(0, \sigma^2_\epsilon (1 - r(s, \phi)) R^{-1}(\phi) r(s, \phi)) \).

Maximum likelihood estimates of \(\tau^2 \):

<table>
<thead>
<tr>
<th># of Knots</th>
<th>Predictive Process</th>
<th>Rectified Predictive Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1.56941</td>
<td>1.00786</td>
</tr>
<tr>
<td>36</td>
<td>1.65688</td>
<td>1.15386</td>
</tr>
<tr>
<td>64</td>
<td>1.45169</td>
<td>1.08358</td>
</tr>
<tr>
<td>100</td>
<td>1.37916</td>
<td>1.09657</td>
</tr>
<tr>
<td>225</td>
<td>1.27391</td>
<td>1.08985</td>
</tr>
<tr>
<td>400</td>
<td>1.22429</td>
<td>1.09489</td>
</tr>
<tr>
<td>625</td>
<td>1.21127</td>
<td>1.09998</td>
</tr>
<tr>
<td>exact</td>
<td>1.14414</td>
<td>1.14414</td>
</tr>
</tbody>
</table>
Univariate random effects models

Quantitative genetics: studies the inheritance of polygenic traits, focusing upon estimation of additive genetic variance, σ^2_A, and the heritability $h^2 = \sigma^2_A / \sigma^2_T$, where the σ^2_T represents the total genetic and unexplained variation.

A high heritability, h^2, should result in a larger selection response (i.e., a higher probability for genetic gain in future generations).

Genetic model results

Parameter credible intervals, 50% (2.5%, 97.5%) for the non-spatial models Scots pine trial.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>72.53 (68.66, 75.08)</td>
<td>72.27 (70.04, 74.57)</td>
</tr>
<tr>
<td>σ^2</td>
<td>31.94 (18.30, 49.85)</td>
<td>25.23 (14.12, 43.96)</td>
</tr>
<tr>
<td>σ^2_A</td>
<td>~</td>
<td>22.37 (11.24, 40.11)</td>
</tr>
<tr>
<td>σ^2_D</td>
<td>133.60 (121.18, 144.70)</td>
<td>116.14 (100.51, 127.76)</td>
</tr>
<tr>
<td>τ^2</td>
<td>0.19 (0.02, 0.29)</td>
<td>0.15 (0.09, 0.26)</td>
</tr>
</tbody>
</table>

Genetic effects model:

$$Y_i = \mathbf{x}_i^T \beta + a_i + d_i + \epsilon_i,$$

- **Common feature** is systematic heterogeneity among observational units (i.e., violation of $\epsilon \sim N(0, \tau^2 I_n)$)
- **Spatial heterogeneity** arises from:
 - soil characteristics
 - micro-climates
 - light availability
- **Residual correlation** among units as a function of distance and/or direction = erroneous parameter estimates (e.g., biased h^2)

Data overview:

- established in 1971 (by Skogforsk)
- partial diallel design of 52 parent trees
- 8,160 planted randomly on 2.2m squares
- 1997 re-inventory of 4,970 surviving trees, height, DBH, branch angle, etc.

Illustration from:

Previous approaches to accommodating residual spatial dependence:
- Manipulate the mean function
- constructing covariates using residuals from neighboring units (see e.g., Wilkinson et al., 1983; Besag and Kempton, 1986; Williams, 1986)
- Geostatistical
 - spatial process formed $AR(1)_c$ol $⊗ AR(1)_c$end (Martin, 1990; Cullis et al., 1998)
 - classical geostatistical method (Zimmerman and Harville, 1991)

All are computationally feasible, but ad hoc and/or restrictive from a modeling perspective.

Trick to sample genetic effects:
Gibbs draw for random effects, e.g., $a_i | \cdot \sim \text{MVN}(\mu_{ai}, \Sigma_{ai})$, where calculating $\Sigma_{ai} = \frac{1}{\tau^2} A^{-1} + \frac{1}{\sigma^2} I$ is computationally expensive!

However A and D are known, so use initial spectral decomposition i.e., $A^{-1} = P^T \Lambda^{-1} P$.

Thus, $\Sigma_{ai} = P^T \left(\frac{1}{\tau^2} \Lambda^{-1} + \frac{1}{\sigma^2} I \right)^{-1} P$ to achieve computational benefits.

Corresponding predictive process model:
$Y(s_i) = X_i^T(s_i) \beta + a_i + d_i + \tilde{w}(s_i) + \epsilon_i$, where $\tilde{w} = [\tilde{w}(s_i)]_{i=1}^{n} \sim \text{MVN}(0, C^*(\theta))$ and $C^*(\theta) = \{ C(s_{i}, s_{j}; \theta) \}_{i,j=1}^{m}$

\[w \] can accomodate complex spatial dependence structures, e.g., anisotropic Matérn correlation function:
$\rho(s_i, s_j; \theta) = \left(1 + \sqrt{\frac{d_{ij}}{\nu}} \right)^{-\nu} \frac{\nu}{\sqrt{\pi} \nu^2} \exp \left(- \sqrt{\frac{d_{ij}}{\nu}} \right)$, where $d_{ij} = (s_i - s_j)^\top \Sigma^{-1} (s_i - s_j), \Sigma = G(\psi) \Lambda^2 G^T(\psi)$. Thus, $\theta = (\nu, \psi, \Lambda)$.
Genetic + spatial effects models

- Candidate spatial models (i.e., specifications of $C^*(\theta)$):
 1. $AR(1)_{col} \otimes AR(1)_{row}$
 2. isotropic Matérn
 3. anisotropic Matérn
- Each model evaluated using 64, 144, and 256 knot grids.
- Model choice using Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002)

<table>
<thead>
<tr>
<th>Model</th>
<th>P_D</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-spatial Add.</td>
<td>306.40</td>
<td>15,618.09</td>
</tr>
<tr>
<td>Add. Dom.</td>
<td>555.92</td>
<td>15,547.85</td>
</tr>
<tr>
<td>Spatial Isotropic 64 Knots</td>
<td>639.77</td>
<td>14,877.51</td>
</tr>
<tr>
<td>144 Knots</td>
<td>739.61</td>
<td>14,814.89</td>
</tr>
<tr>
<td>256 Knots</td>
<td>802.29</td>
<td>14,771.64</td>
</tr>
<tr>
<td>Spatial Anisotropic 64 Knots</td>
<td>678.82</td>
<td>14,884.13</td>
</tr>
<tr>
<td>144 Knots</td>
<td>748.89</td>
<td>14,823.90</td>
</tr>
<tr>
<td>256 Knots</td>
<td>806.46</td>
<td>14,781.53</td>
</tr>
</tbody>
</table>

Parameter credible intervals, 50% (2.5%, 97.5%) for the isotropic Matérn and 64 and 256 knots Scots pine trial:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>64 Knots</th>
<th>256 Knots</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>72.53 (69.00, 76.05)</td>
<td>74.21 (69.66, 79.66)</td>
</tr>
<tr>
<td>σ^2_a</td>
<td>26.87 (17.14, 41.82)</td>
<td>33.03 (18.19, 53.69)</td>
</tr>
<tr>
<td>σ^2_d</td>
<td>11.69 (6.00, 34.27)</td>
<td>13.96 (7.65, 27.05)</td>
</tr>
<tr>
<td>τ^2</td>
<td>41.84 (23.71, 73.34)</td>
<td>50.36 (30.24, 88.10)</td>
</tr>
<tr>
<td>ν</td>
<td>95.55 (72.11, 99.65)</td>
<td>80.75 (67.90, 96.16)</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.83 (0.31, 1.46)</td>
<td>0.47 (0.26, 1.28)</td>
</tr>
<tr>
<td>Eff. Range</td>
<td>0.05 (0.02, 0.09)</td>
<td>0.04 (0.02, 0.09)</td>
</tr>
<tr>
<td>h^2</td>
<td>71.00 (44.66, 127.93)</td>
<td>74.59 (45.22, 129.83)</td>
</tr>
</tbody>
</table>

Decrease in τ^2 due to removal of spatial variation, results in increase in h^2 (i.e., ~ 0.25 vs. ~ 0.15 with confounding).

Summary

Challenge - to meet modeling needs:

- ensure computationally feasible
 - reduce algorithmic complexity = cheap tricks (e.g., spectral decomp. of A prior to MCMC)
 - reduce dimensionality = predictive process
- maintain richness and flexibility
 - focus on the model not how to estimate the parameters = embrace new tools (MCMC) for estimating highly flexible hierarchical models
- truly acknowledge sources of uncertainty
 - propagate uncertainty through hierarchical structures (e.g., recognize uncertainty in $C(\theta)$)