Hierarchical Modelling for Univariate Spatial Data

Sudipto Banerjee¹ and Andrew O. Finley²

¹ Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.
² Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A.

March 4, 2013

Univariate spatial models

Algorithmic Modelling

- Spatial surface observed at finite set of locations \(\mathcal{S} = \{s_1, s_2, \ldots, s_n\} \)
- Tessellate the spatial domain (usually with data locations as vertices)
- Fit an interpolating polynomial:
 \[
 f(s) = \sum_i w_i(\mathcal{S}; s_i) f(s_i)
 \]
- "Interpolate" by reading off \(f(s_0) \).
- Issues:
 - Sensitivity to tessellations
 - Choices of multivariate interpolators
 - Numerical error analysis

Univariate spatial models

Simple linear model

- Response: \(Y(s) \) at location \(s \)
- Mean: \(\mu = x^T(\mathbf{s})\beta \)
- Error: \(\epsilon(s) \overset{\text{iid}}{\sim} N(0, \tau^2) \)

Univariate spatial models

Simple linear model

- Assumptions regarding \(\epsilon(s) \):
 - \(\epsilon(s) \overset{\text{iid}}{\sim} N(0, \tau^2) \)
 - \(\epsilon(s_i) \) and \(\epsilon(s_j) \) are uncorrelated for all \(i \neq j \)
Univariate spatial models

Spatial Gaussian processes (GP):
- Say \(w(s) \sim GP(0, \sigma^2 R(\phi)) \) and
 \[
 \text{Cov}(w(s_1), w(s_2)) = \sigma^2 \rho(\phi; \|s_1 - s_2\|)
 \]
- Let \(w = [w(s_i)]_{i=1}^n \), then
 \[
 w \sim N(0, \sigma^2 R(\phi)), \quad \text{where } R(\phi) = [\rho(\phi; \|s_i - s_j\|)]_{i,j=1}^n
 \]

Realization of a Gaussian process:
- Changing \(\phi \) and holding \(\sigma^2 = 1 \):
 \[
 w \sim N(0, \sigma^2 R(\phi)), \quad \text{where } R(\phi) = [\rho(\phi; \|s_i - s_j\|)]_{i,j=1}^n
 \]
- Correlation model for \(R(\phi) \):
e.g., exponential decay
 \[
 \rho(\phi; t) = \exp(-\phi t) \quad \text{if } t > 0.
 \]
- Other valid models e.g., Gaussian, Spherical, Matérn.
- Effective range,
 \[
 t_0 = \ln(0.05)/\phi \approx 3/\phi
 \]

Univariate spatial regression

- First stage:
 \[
 y|\beta, w, \tau^2 \sim \prod_{i=1}^n N(Y(s_i) | X_i^T(s_i) \beta + w(s_i), \tau^2)
 \]
- Second stage:
 \[
 w|\sigma^2, \phi \sim N(0, \sigma^2 R(\phi))
 \]
- Third stage: Priors on \(\Omega = (\beta, \tau^2, \sigma^2, \phi) \)
- Marginalized likelihood:
 \[
 y|\Omega \sim N(X \beta, \sigma^2 R(\phi) + \tau^2 I)
 \]
- Note: Spatial process parametrizes \(\Sigma \):
 \[
 y = X \beta + \epsilon, \quad \epsilon \sim N(0, \Sigma), \quad \Sigma = \sigma^2 R(\phi) + \tau^2 I
 \]

Bayesian Computations
- Choice: Fit \(y|\Omega \times [\Omega] \) or \(y|\beta, w, \tau^2 \times [w|\sigma^2, \phi] \times [\Omega] \).
- Conditional model:
 - conjugate full conditionals for \(\sigma^2, \tau^2 \) and \(w \) – easier to program.
- Marginalized model:
 - need Metropolis or Slice sampling for \(\sigma^2, \tau^2 \) and \(\phi \). Harder to program.
 - But, reduced parameter space \Rightarrow faster convergence
 - \(\sigma^2 R(\phi) + \tau^2 I \) is more stable than \(\sigma^2 R(\phi) \).
- But what about \(R^{-1}(\phi) \) ?? EXPENSIVE!
Univariate spatial models

Where are the w’s?

- Interest often lies in the spatial surface \(w|y \).
- They are recovered from
 \[
 [w|y, X] = \int [w|\Omega, y, X] \times [\Omega|y, X] d\Omega
 \]
 using posterior samples:
 - Obtain \(\Omega^{(1)}, \ldots, \Omega^{(G)} \sim [\Omega|y, X] \).
 - For each \(\Omega^{(g)} \), draw \(w^{(g)} \sim [w|\Omega^{(g)}, y, X] \).

- NOTE: With Gaussian likelihoods \([w|\Omega, y, X] \) is also Gaussian. With other likelihoods this may not be easy and often the conditional updating scheme is preferred.

Univariate spatial regression

Another look: \([w(s)|y] \)

Residual plot: \([w(s)|y] \)

Easting Northing

Another look: \([w(s)|y] \)

Easting Northing

Often we need to predict \(Y(s) \) at a new set of locations \(\{s_0, \ldots, s_m\} \) with associated predictor matrix \(X \).

- Sample from predictive distribution:
 \[
 [\bar{y}|y, X, \bar{X}] = \int [\bar{y}|\Omega, y, X, \bar{X}] d\Omega
 = \int [\bar{y}|\Omega, y, X, \bar{X}] \times [\Omega|y, X] d\Omega,
 \]
 \([\bar{y}|\Omega, y, X, \bar{X}] \) is multivariate normal. Sampling scheme:
 - Obtain \(\Omega^{(1)}, \ldots, \Omega^{(G)} \sim [\Omega|y, X] \).
 - For each \(\Omega^{(g)} \), draw \(\bar{y}^{(g)} \sim [\bar{y}|\Omega^{(g)}, y, X, \bar{X}] \).

Prediction: Summary of \([Y(s)|y] \)
Modelling temperature: 507 locations in Colorado.

Simple spatial regression model:

\[Y(s) = X(s)\beta + w(s) + \epsilon(s) \]

- \(w(s) \sim GP(0, \sigma^2 \rho(\cdot; \phi, \nu)) \);
- \(\epsilon(s) \overset{iid}{\sim} N(0, \tau^2) \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean (2.5%, 97.5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2.827 (2.131, 3.866)</td>
</tr>
<tr>
<td>Elevation</td>
<td>-0.426 (-0.527, -0.333)</td>
</tr>
<tr>
<td>Precipitation</td>
<td>0.037 (0.002, 0.072)</td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>0.134 (0.051, 1.245)</td>
</tr>
<tr>
<td>(\phi)</td>
<td>7.39E-3 (4.71E-3, 51.21E-3)</td>
</tr>
<tr>
<td>Range</td>
<td>278.2 (38.8, 476.3)</td>
</tr>
<tr>
<td>(\tau^2)</td>
<td>0.051 (0.022, 0.092)</td>
</tr>
</tbody>
</table>

Temperature residual map

Elevation map

Residual map with elev. as covariate