Researchers in diverse areas such as climatology, ecology, environmental health, and real estate marketing are increasingly faced with the task of analyzing data that are:

- highly multivariate, with many important predictors and response variables,
- geographically referenced, and often presented as maps,
- temporally correlated, as in longitudinal or other time series structures.

This motivates hierarchical modeling and data analysis for complex spatial (and spatiotemporal) data sets.
Researchers in diverse areas such as climatology, ecology, environmental health, and real estate marketing are increasingly faced with the task of analyzing data that are:

- highly multivariate, with many important predictors and response variables,
Researchers in diverse areas such as climatology, ecology, environmental health, and real estate marketing are increasingly faced with the task of analyzing data that are:

- highly multivariate, with many important predictors and response variables,
- geographically referenced, and often presented as maps, and
Researchers in diverse areas such as climatology, ecology, environmental health, and real estate marketing are increasingly faced with the task of analyzing data that are:

- highly multivariate, with many important predictors and response variables,
- geographically referenced, and often presented as maps, and
- temporally correlated, as in longitudinal or other time series structures.
Researchers in diverse areas such as climatology, ecology, environmental health, and real estate marketing are increasingly faced with the task of analyzing data that are:

- highly multivariate, with many important predictors and response variables,
- geographically referenced, and often presented as maps, and
- temporally correlated, as in longitudinal or other time series structures.

⇒ motivates hierarchical modeling and data analysis for complex spatial (and spatiotemporal) data sets.
• **point-referenced data**, where $Y(s)$ is a random vector at a location $s \in \mathbb{R}^r$, where s varies \textit{continuously} over D, a fixed subset of \mathbb{R}^r that contains an r-dimensional rectangle of positive volume;
point-referenced data, where $Y(s)$ is a random vector at a location $s \in \mathbb{R}^r$, where s varies continuously over D, a fixed subset of \mathbb{R}^r that contains an r-dimensional rectangle of positive volume;

areal data, where D is again a fixed subset (of regular or irregular shape), but now partitioned into a finite number of areal units with well-defined boundaries;
- **point-referenced data**, where \(Y(\mathbf{s}) \) is a random vector at a location \(\mathbf{s} \in \mathbb{R}^r \), where \(\mathbf{s} \) varies continuously over \(D \), a fixed subset of \(\mathbb{R}^r \) that contains an \(r \)-dimensional rectangle of positive volume;

- **areal data**, where \(D \) is again a fixed subset (of regular or irregular shape), but now partitioned into a finite number of areal units with well-defined boundaries;

- **point pattern data**, where now \(D \) is itself random; its index set gives the locations of random events that are the spatial point pattern. \(Y(\mathbf{s}) \) itself can simply equal 1 for all \(\mathbf{s} \in D \) (indicating occurrence of the event), or possibly give some additional covariate information (producing a marked point pattern process).
First step in analyzing data
• First step in analyzing data

• First Law of Geography: Mean + Error
• First step in analyzing data

• First Law of Geography: Mean + Error

• Mean: first-order behavior
First step in analyzing data

First Law of Geography: Mean + Error

Mean: first-order behavior

Error: second-order behavior (covariance function)
First step in analyzing data

First Law of Geography: Mean + Error

Mean: first-order behavior

Error: second-order behavior (covariance function)

EDA tools examine both first and second order behavior
First step in analyzing data

First Law of Geography: Mean + Error

Mean: first-order behavior

Error: second-order behavior (covariance function)

EDA tools examine both first and second order behavior

Preliminary displays: Simple locations to surface displays
First Law of Geography

data = mean + error
Scallops Sites
Spatial surface observed at finite set of locations
\[\mathcal{I} = \{ s_1, s_2, ..., s_n \} \]

Tessellate the spatial domain (usually with data locations as vertices)

Fit an interpolating polynomial:
\[
f(s) = \sum_i w_i(\mathcal{I}; s) f(s_i)
\]

“Interpolate” by reading off \(f(s_0) \).

Issues:
- Sensitivity to tessellations
- Choices of multivariate interpolators
- Numerical error analysis
Introduction to spatial data and models

Scallops data: image and contour plots

TIES 2009 Hierarchical Modeling and Analysis
Drop-line scatter plot
Surface plot
Introduction to spatial data and models

Scallops data: image and contour plots

Image contour plot
Locations form patterns
Surface features
Interesting plot arrangements

Graph showing the distribution of points at various UTM coordinates.
Point-level modelling refers to modelling of spatial data collected at locations referenced by coordinates (e.g., lat-long, Easting-Northing).
Point-level modelling refers to modelling of spatial data collected at locations referenced by coordinates (e.g., lat-long, Easting-Northing).

Fundamental concept: Data from a spatial process \(\{ Y(s) : s \in D \} \), where \(D \) is a fixed subset in Euclidean space.
Point-level modelling refers to modelling of spatial data collected at locations referenced by coordinates (e.g., lat-long, Easting-Northing).

Fundamental concept: Data from a spatial process \(\{Y(s) : s \in D\} \), where \(D \) is a fixed subset in Euclidean space.

Example: \(Y(s) \) is a pollutant level at site \(s \).
Point-level modelling refers to modelling of spatial data collected at locations referenced by coordinates (e.g., lat-long, Easting-Northing).

Fundamental concept: Data from a spatial process \(\{ Y(s) : s \in D \} \), where \(D \) is a fixed subset in Euclidean space.

Example: \(Y(s) \) is a pollutant level at site \(s \)

Conceptually: Pollutant level exists at all possible sites
Point-level modelling refers to modelling of spatial data collected at locations referenced by coordinates (e.g., lat-long, Easting-Northing).

Fundamental concept: Data from a spatial process \(\{Y(s) : s \in D\} \), where \(D \) is a fixed subset in Euclidean space.

Example: \(Y(s) \) is a pollutant level at site \(s \)

Conceptually: Pollutant level exists at all possible sites

Practically: Data will be a partial realization of a spatial process – observed at \(\{s_1, \ldots, s_n\} \)
Point-level modelling refers to modelling of spatial data collected at locations referenced by coordinates (e.g., lat-long, Easting-Northing).

Fundamental concept: Data from a spatial process \(\{Y(s) : s \in D\} \), where \(D \) is a fixed subset in Euclidean space.

Example: \(Y(s) \) is a pollutant level at site \(s \)

Conceptually: Pollutant level exists at all possible sites

Practically: Data will be a partial realization of a spatial process – observed at \(\{s_1, \ldots, s_n\} \)

Statistical objectives: Inference about the process \(Y(s) \); predict at new locations.
Suppose our spatial process has a mean, \(\mu(s) = E(Y(s)) \), and that the variance of \(Y(s) \) exists for all \(s \in D \).
Suppose our spatial process has a mean, $\mu(s) = E(Y(s))$, and that the variance of $Y(s)$ exists for all $s \in D$.

- **Strong stationarity:** If for any given set of sites, and any displacement h, the distribution of $(Y(s_1), ..., Y(s_n))$ is the same as, $(Y(s_1 + h), ..., Y(s_n + h))$.

- **Weak stationarity:** Constant mean $\mu(s) = \mu$, and $Cov(Y(s), Y(s + h)) = C(h)$: the covariance depends only upon the displacement (or separation) vector.
Suppose our spatial process has a mean, \(\mu(s) = E(Y(s)) \), and that the variance of \(Y(s) \) exists for all \(s \in D \).

- **Strong stationarity:** If for any given set of sites, and any displacement \(h \), the distribution of \((Y(s_1), \ldots, Y(s_n)) \) is the same as, \((Y(s_1 + h), \ldots, Y(s_n + h)) \).

- **Weak stationarity:** Constant mean \(\mu(s) = \mu \), and \(Cov(Y(s), Y(s + h)) = C(h) \): the covariance depends only upon the displacement (or separation) vector.

- **Strong stationarity implies weak stationarity**
Suppose our spatial process has a mean, \(\mu(s) = E(Y(s)) \), and that the variance of \(Y(s) \) exists for all \(s \in D \).

- **Strong stationarity:** If for any given set of sites, and any displacement \(h \), the distribution of \((Y(s_1), \ldots, Y(s_n)) \) is the same as, \((Y(s_1 + h), \ldots, Y(s_n + h)) \).

- **Weak stationarity:** Constant mean \(\mu(s) = \mu \), and \(Cov(Y(s), Y(s + h)) = C(h) \): the covariance depends only upon the displacement (or separation) vector.

- **Strong stationarity implies weak stationarity**

- The process is **Gaussian** if \(Y = (Y(s_1), \ldots, Y(s_n)) \) has a multivariate normal distribution.
Suppose our spatial process has a mean, $\mu(s) = E(Y(s))$, and that the variance of $Y(s)$ exists for all $s \in D$.

- **Strong stationarity:** If for any given set of sites, and any displacement h, the distribution of $(Y(s_1), \ldots, Y(s_n))$ is the same as, $(Y(s_1 + h), \ldots, Y(s_n + h))$.

- **Weak stationarity:** Constant mean $\mu(s) = \mu$, and $Cov(Y(s), Y(s + h)) = C(h)$: the covariance depends only upon the displacement (or separation) vector.

- Strong stationarity implies weak stationarity

- The process is **Gaussian** if $Y = (Y(s_1), \ldots, Y(s_n))$ has a multivariate normal distribution.

- For Gaussian processes, strong and weak stationarity are equivalent.
Variograms

Suppose we assume $E[Y(s + h) - Y(s)] = 0$ and define

$$E[Y(s + h) - Y(s)]^2 = Var(Y(s + h) - Y(s)) = 2\gamma(h).$$

This is sensible if the left hand side depends only upon h. Then we say the process is *intrinsically stationary*.

Variograms

- Suppose we assume $E[Y(s + h) - Y(s)] = 0$ and define

 $E[Y(s + h) - Y(s)]^2 = Var(Y(s + h) - Y(s)) = 2\gamma(h)$.

 This is sensible if the left hand side depends only upon h. Then we say the process is intrinsically stationary.

- $\gamma(h)$ is called the semivariogram and $2\gamma(h)$ is called the variogram.
Variograms

- Suppose we assume $E[Y(s + h) - Y(s)] = 0$ and define

 $$E[Y(s + h) - Y(s)]^2 = Var(Y(s + h) - Y(s)) = 2\gamma(h).$$

 This is sensible if the left hand side depends only upon h. Then we say the process is intrinsically stationary.

- $\gamma(h)$ is called the *semivariogram* and $2\gamma(h)$ is called the *variogram*.

Note that intrinsic stationarity defines only the first and second moments of the differences $Y(s + h) - Y(s)$. It says nothing about the joint distribution of a collection of variables $Y(s_1), \ldots, Y(s_n)$, and thus provides no likelihood.
Intrinsic Stationarity and Ergodicity

Relationship between \(\gamma(h) \) and \(C(h) \):

\[
2\gamma(h) = \text{Var}(Y(s + h)) + \text{Var}(Y(s)) - 2\text{Cov}(Y(s + h), Y(s)) \\
= C(0) + C(0) - 2C(h) \\
= 2[C(0) - C(h)].
\]
Intrinsic Stationarity and Ergodicity

- Relationship between $\gamma(h)$ and $C(h)$:

$$2\gamma(h) = \text{Var}(Y(s + h)) + \text{Var}(Y(s)) - 2\text{Cov}(Y(s + h), Y(s))$$
$$= C(0) + C(0) - 2C(h)$$
$$= 2[C(0) - C(h)].$$

- Easy to recover γ from C. The converse needs the additional assumption of \textit{ergodicity}: $\lim_{\|u\|\to\infty} C(u) = 0$.
Intrinsic Stationarity and Ergodicity

- Relationship between $\gamma(h)$ and $C(h)$:

$$2\gamma(h) = \text{Var}(Y(s + h)) + \text{Var}(Y(s)) - 2\text{Cov}(Y(s + h), Y(s))$$

$$= C(0) + C(0) - 2C(h)$$

$$= 2[C(0) - C(h)].$$

- Easy to recover γ from C. The converse needs the additional assumption of ergodicity: $\lim_{\|u\| \to \infty} C(u) = 0$.

- So $\lim_{\|u\| \to \infty} \gamma(u) = C(0)$, and we can recover C from γ as long as this limit exists.

$$C(h) = \lim_{\|u\| \to \infty} \gamma(u) - \gamma(h).$$
When $\gamma(h)$ or $C(h)$ depends upon the separation vector only through the distance $||h||$, we say that the process is \textit{isotropic}. In that case, we write $\gamma(||h||)$ or $C(||h||)$. Otherwise we say that the process is \textit{anisotropic}.
When $\gamma(h)$ or $C(h)$ depends upon the separation vector only through the distance $||h||$, we say that the process is isotropic. In that case, we write $\gamma(||h||)$ or $C(||h||)$. Otherwise we say that the process is anisotropic.

If the process is intrinsically stationary and isotropic, it is also called homogeneous.
When $\gamma(h)$ or $C(h)$ depends upon the separation vector only through the distance $\|h\|$, we say that the process is isotropic. In that case, we write $\gamma(\|h\|)$ or $C(\|h\|)$. Otherwise we say that the process is anisotropic.

If the process is intrinsically stationary and isotropic, it is also called homogeneous.

Isotropic processes are popular because of their simplicity, interpretability, and because a number of relatively simple parametric forms are available as candidates for C (and γ). Denoting $\|h\|$ by t for notational simplicity, the next two tables provide a few examples...
Some common isotropic variograms

<table>
<thead>
<tr>
<th>Model</th>
<th>Variogram, $\gamma(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>$\gamma(t) = \begin{cases} \tau^2 + \sigma^2 t & \text{if } t > 0 \ 0 & \text{otherwise} \end{cases}$</td>
</tr>
<tr>
<td>Spherical</td>
<td>$\gamma(t) = \begin{cases} \tau^2 + \sigma^2 & \text{if } t \geq 1/\phi \ \tau^2 + \sigma^2 \left[\frac{3}{2} \phi t - \frac{1}{2} (\phi t)^3 \right] & \text{if } 0 < t \leq 1/\phi \ 0 & \text{otherwise} \end{cases}$</td>
</tr>
<tr>
<td>Exponential</td>
<td>$\gamma(t) = \begin{cases} \tau^2 + \sigma^2 (1 - \exp(-\phi t)) & \text{if } t > 0 \ 0 & \text{otherwise} \end{cases}$</td>
</tr>
<tr>
<td>Powered exponential</td>
<td>$\gamma(t) = \begin{cases} \tau^2 + \sigma^2 (1 - \exp(-</td>
</tr>
<tr>
<td>Matérn at $\nu = 3/2$</td>
<td>$\gamma(t) = \begin{cases} \tau^2 + \sigma^2 \left[1 - (1 + \phi t) e^{-\phi t} \right] & \text{if } t > 0 \ 0 & \text{otherwise} \end{cases}$</td>
</tr>
</tbody>
</table>
Examples: Spherical Variogram

\[\gamma(t) = \begin{cases}
\tau^2 + \sigma^2 & \text{if } t \geq 1/\phi \\
\tau^2 + \sigma^2 \left[\frac{3}{2} \phi t - \frac{1}{2} (\phi t)^3 \right] & \text{if } 0 < t \leq 1/\phi \\
0 & \text{if } t = 0.
\end{cases} \]
Examples: Spherical Variogram

\[
\gamma(t) = \begin{cases}
\tau^2 + \sigma^2 & \text{if } t \geq 1/\phi \\
\tau^2 + \sigma^2 \left[\frac{3}{2} \phi t - \frac{1}{2} (\phi t)^3\right] & \text{if } 0 < t \leq 1/\phi \\
0 & \text{if } t = 0.
\end{cases}
\]

While \(\gamma(0) = 0 \) by definition, \(\gamma(0^+) \equiv \lim_{t \to 0^+} \gamma(t) = \tau^2 \); this quantity is the \textit{nugget}.
Examples: Spherical Variogram

\[
\gamma(t) = \begin{cases}
\tau^2 + \sigma^2 & \text{if } t \geq 1/\phi \\
\tau^2 + \sigma^2 \left[\frac{3}{2} \phi t - \frac{1}{2} (\phi t)^3 \right] & \text{if } 0 < t \leq 1/\phi \\
0 & \text{if } t = 0.
\end{cases}
\]

- While \(\gamma(0) = 0 \) by definition, \(\gamma(0^+) \equiv \lim_{t \to 0^+} \gamma(t) = \tau^2 \); this quantity is the \textit{nugget}.
- \(\lim_{t \to \infty} \gamma(t) = \tau^2 + \sigma^2 \); this asymptotic value of the semivariogram is called the \textit{sill}. (The sill minus the nugget, \(\sigma^2 \) in this case, is called the \textit{partial sill}.)
Examples: Spherical Variogram

\[\gamma(t) = \begin{cases}
\tau^2 + \sigma^2 & \text{if } t \geq \frac{1}{\phi} \\
\tau^2 + \sigma^2 \left[\frac{3}{2} \phi t - \frac{1}{2} (\phi t)^3 \right] & \text{if } 0 < t \leq \frac{1}{\phi} \\
0 & \text{if } t = 0.
\end{cases} \]

- While \(\gamma(0) = 0 \) by definition, \(\gamma(0^+) = \lim_{t \to 0^+} \gamma(t) = \tau^2 \); this quantity is the \textit{nugget}.
- \(\lim_{t \to \infty} \gamma(t) = \tau^2 + \sigma^2 \); this asymptotic value of the semivariogram is called the \textit{sill}. (The sill minus the nugget, \(\sigma^2 \) in this case, is called the \textit{partial sill}.)
- Finally, the value \(t = \frac{1}{\phi} \) at which \(\gamma(t) \) first reaches its ultimate level (the sill) is called the \textit{range}, \(R = \frac{1}{\phi} \).
Examples: Spherical Variogram

b) spherical; \(a_0 = 0.2\), \(a_1 = 1\), \(R = 1\)
Some common isotropic covariograms

<table>
<thead>
<tr>
<th>Model</th>
<th>Covariance function, $C(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>$C(t)$ does not exist</td>
</tr>
<tr>
<td>Spherical</td>
<td>$C(t) = \begin{cases} 0 & \text{if } t \geq 1/\phi \ \frac{\sigma^2}{\tau^2 + \sigma^2} \left[1 - \frac{3}{2} \phi t + \frac{1}{2} (\phi t)^3 \right] & \text{if } 0 < t \leq 1/\phi \ \tau^2 + \sigma^2 & \text{otherwise} \end{cases}$</td>
</tr>
<tr>
<td>Exponential</td>
<td>$C(t) = \begin{cases} \sigma^2 \exp(-\phi t) & \text{if } t > 0 \ \frac{\tau^2}{\tau^2 + \sigma^2} & \text{otherwise} \end{cases}$</td>
</tr>
<tr>
<td>Powered exponential</td>
<td>$C(t) = \begin{cases} \sigma^2 \exp(-</td>
</tr>
<tr>
<td>Matérn at $\nu = 3/2$</td>
<td>$C(t) = \begin{cases} \sigma^2 (1 + \phi t) \exp(-\phi t) & \text{if } t > 0 \ \tau^2 + \sigma^2 & \text{otherwise} \end{cases}$</td>
</tr>
</tbody>
</table>
Notes on exponential model

\[C'(t) = \begin{cases}
\tau^2 + \sigma^2 & \text{if } t = 0 \\
\sigma^2 \exp(-\phi t) & \text{if } t > 0
\end{cases} \]
Notes on exponential model

\[
C(t) = \begin{cases}
\tau^2 + \sigma^2 & \text{if } t = 0 \\
\sigma^2 \exp(-\phi t) & \text{if } t > 0
\end{cases}.
\]

We define the effective range, \(t_0 \), as the distance at which this correlation has dropped to only 0.05. Setting \(\exp(-\phi t_0) \) equal to this value we obtain \(t_0 \approx 3/\phi \), since \(\log(0.05) \approx -3 \).
Notes on exponential model

\[C(t) = \begin{cases}
\tau^2 + \sigma^2 & \text{if } t = 0 \\
\sigma^2 \exp(-\phi t) & \text{if } t > 0
\end{cases} \]

- We define the \textit{effective range}, \(t_0 \), as the distance at which this correlation has dropped to only 0.05. Setting \(\exp(-\phi t_0) \) equal to this value we obtain \(t_0 \approx 3/\phi \), since \(\log(0.05) \approx -3 \).

- Finally, the form of \(C(t) \) shows why the nugget \(\tau^2 \) is often viewed as a “\textit{nonspatial effect variance},” and the partial sill \((\sigma^2) \) is viewed as a “\textit{spatial effect variance}.”
The Matèrn Correlation Function

- Much of statistical modelling is carried out through correlation functions rather than variograms

\[
\begin{align*}
C(t) &= \sigma^2 \frac{2^{\nu-1} \Gamma(\nu)}{\nu K_\nu(2\sqrt{\nu}t\phi)} \\
&+ \sigma^2 \quad \text{if } t = 0
\end{align*}
\]
The Matérn Correlation Function

- Much of statistical modelling is carried out through correlation functions rather than variograms
- The Matérn is a very versatile family:

\[
C(t) = \begin{cases}
\frac{\sigma^2}{2^{\nu-1} \Gamma(\nu)} \left(2\sqrt{\nu} t \phi \right)^\nu K_\nu \left(2\sqrt{\nu} t \phi \right) & \text{if } t > 0 \\
\tau^2 + \sigma^2 & \text{if } t = 0
\end{cases}
\]

\(K_\nu\) is the modified Bessel function of order \(\nu\) (computationally tractable)
The Matèrn Correlation Function

- Much of statistical modelling is carried out through correlation functions rather than variograms
- The Matèrn is a very versatile family:

\[
C'(t) = \begin{cases}
\frac{\sigma^2}{2^{\nu-1}\Gamma(\nu)}(2\sqrt{\nu}t\phi)^\nu K_\nu(2\sqrt{\nu}t\phi) & \text{if } t > 0 \\
\tau^2 + \sigma^2 & \text{if } t = 0
\end{cases}
\]

- \(K_\nu\) is the modified Bessel function of order \(\nu\) (computationally tractable)
- \(\nu\) is a smoothness parameter (a fractal) controlling process smoothness
How do we select a variogram? Can the data really distinguish between variograms?

\[
\gamma(t) = \frac{1}{2} \left| N(t) \right| \sum_{s_i, s_j \in N(t)} (Y(s_i) - Y(s_j))^2
\]

where \(N(t) \) is the number of points such that \(\|s_i - s_j\| = t \) and \(|N(t)| \) is the number of points in \(N(t) \).

Grid up the \(t \) space into intervals \(I_1 = (0, t_1) \), \(I_2 = (t_1, t_2) \), and so forth, up to \(I_K = (t_{K-1}, t_K) \). Representing \(t \) values in each interval by its midpoint, we define:

\[
N(t_k) = \{ (s_i, s_j) : \|s_i - s_j\| \in I_k \} \text{, } k = 1, ..., K.
\]
How do we select a variogram? Can the data really distinguish between variograms?

Empirical Variogram:

\[\gamma(t) = \frac{1}{2|N(t)|} \sum_{s_i, s_j \in N(t)} (Y(s_i) - Y(s_j))^2 \]

where \(N(t) \) is the number of points such that \(||s_i - s_j|| = t \) and \(|N(t)| \) is the number of points in \(N(t) \).
How do we select a variogram? Can the data really distinguish between variograms?

Empirical Variogram:

\[\gamma(t) = \frac{1}{2|N(t)|} \sum_{s_i, s_j \in N(t)} (Y(s_i) - Y(s_j))^2 \]

where \(N(t) \) is the number of points such that \(\|s_i - s_j\| = t \) and \(|N(t)| \) is the number of points in \(N(t) \).

Grid up the \(t \) space into intervals \(I_1 = (0, t_1), I_2 = (t_1, t_2), \) and so forth, up to \(I_K = (t_{K-1}, t_K) \). Representing \(t \) values in each interval by its midpoint, we define:

\[N(t_k) = \{(s_i, s_j) : \|s_i - s_j\| \in I_k\}, k = 1, \ldots, K. \]
Empirical variogram: scallops data
Empirical variogram: scallops data