Hierarchical Modelling for non-Gaussian Spatial Data

Sudipto Banerjee1 and Andrew O. Finley2

1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A.

2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

July 2, 2009
Often data sets preclude Gaussian modelling: \(Y(\mathbf{s}) \) may not even be continuous.

Example: \(Y(\mathbf{s}) \) is a binary or count variable
- species presence or absence at location \(\mathbf{s} \)
- species abundance from count at location \(\mathbf{s} \)
- continuous forest variable is high or low at location \(\mathbf{s} \)

Replace Gaussian likelihood by exponential family member

Diggle Tawn and Moyeed (1998)
First stage: $Y(s_i)$ are conditionally independent given β
and $w(s_i)$, so $f(y(s_i)|\beta, w(s_i), \gamma)$ equals

$$h(y(s_i), \gamma) \exp(\gamma[y(s_i)\eta(s_i) - \psi(\eta(s_i))])$$

where $g(E(Y(s_i))) = \eta(s_i) = x^T(s_i)\beta + w(s_i)$ (canonical
link function) and γ is a dispersion parameter.

Second stage: Model $w(s)$ as a Gaussian process:

$$w \sim N(0, \sigma^2 R(\phi))$$

Third stage: Priors and hyperpriors.

No process for $Y(s)$, only a valid joint distribution

Not sensible to add a pure error term $\epsilon(s)$
We are modelling with spatial random effects.

Introducing these in the transformed mean encourages means of spatial variables at proximate locations to be close to each other.

Marginal spatial dependence is induced between, say, \(Y(s) \) and \(Y(s') \), but observed \(Y(s) \) and \(Y(s') \) need not be close to each other.

Second stage spatial modelling is attractive for spatial explanation in the mean.

First stage spatial modelling more appropriate to encourage proximate observations to be close.
Illustration from:

Binary spatial regression: forest/non-forest

We illustrate a non-Gaussian model for point-referenced spatial data:

- Objective is to make pixel-level prediction of forest/non-forest across the domain.

Data: Observations are from 500 georeferenced USDA Forest Service Forest Inventory and Analysis (FIA) inventory plots within a 32 km radius circle in MN, USA. The response $Y(s)$ is a binary variable, with

$$Y(s) = \begin{cases}
1 & \text{if inventory plot is forested} \\
0 & \text{if inventory plot is not forested}
\end{cases}$$

Observed covariates include the coinciding pixel values for 3 dates of 30×30 m resolution Landsat imagery.
Binary spatial regression: forest/non-forest

We illustrate a non-Gaussian model for point-referenced spatial data:

- **Objective**: Is to make pixel-level prediction of forest/non-forest across the domain.
- **Data**: Observations are from 500 georeferenced USDA Forest Service Forest Inventory and Analysis (FIA) inventory plots within a 32 km radius circle in MN, USA.
- The response $Y(s)$ is a binary variable, with

$$Y(s) = \begin{cases}
1 & \text{if inventory plot is forested} \\
0 & \text{if inventory plot is not forested}
\end{cases}$$
Binary spatial regression: forest/non-forest

We illustrate a non-Gaussian model for point-referenced spatial data:

- **Objective** is to make pixel-level prediction of forest/non-forest across the domain.
- **Data**: Observations are from 500 georeferenced USDA Forest Service Forest Inventory and Analysis (FIA) inventory plots within a 32 km radius circle in MN, USA.
- The response $Y(s)$ is a binary variable, with

\[
Y(s) = \begin{cases}
1 & \text{if inventory plot is forested} \\
0 & \text{if inventory plot is not forested}
\end{cases}
\]

- Observed covariates include the coinsiding pixel values for 3 dates of 30×30 m resolution Landsat imagery.
Binary spatial regression: forest/non-forest

We fit a generalized linear model where

\[Y(s_i) \sim Bernoulli(p(s_i)), \quad \text{logit}(p(s_i)) = x^T(s_i)\beta + w(s_i). \]
Binary spatial regression: forest/non-forest

- We fit a generalized linear model where
 \[Y(s_i) \sim Bernoulli(p(s_i)), \quad \text{logit}(p(s_i)) = x^T(s_i)\beta + w(s_i). \]

- Assume vague flat for \(\beta \), a Uniform\((3/32, 3/0.5)\) prior for \(\phi \), and an inverse-Gamma\((2, \cdot)\) prior for \(\sigma^2 \).
Binary spatial regression: forest/non-forest

- We fit a generalized linear model where
 \(Y(s_i) \sim Bernoulli(p(s_i)), \quad \text{logit}(p(s_i)) = x^T(s_i)\beta + w(s_i). \)

- Assume vague flat for \(\beta \), a Uniform\((3/32, 3/0.5)\) prior for \(\phi \), and an inverse-Gamma\((2, \cdot)\) prior for \(\sigma^2 \).

- Parameters updated with Metropolis algorithm using target log density:

\[
\ln (p(\Omega \mid Y)) \propto - \left(\sigma_a + 1 + \frac{n}{2} \right) \ln (\sigma^2) - \frac{\sigma_b}{\sigma^2} - \frac{1}{2} \ln (|R(\phi)|) - \frac{1}{2\sigma^2} w^T R(\phi)^{-1} w \\
+ \sum_{i=1}^{n} Y(s_i) \left(x^T(s_i)\beta + w(s_i) \right) - \sum_{i=1}^{n} \ln \left(1 + \exp(x^T(s_i)\beta + w(s_i)) \right) \\
+ \ln(\sigma^2) + \ln(\phi - \phi_a) + \ln(\phi_b - \phi).
\]
Posterior parameter estimates

Parameter estimates (posterior medians and upper and lower 2.5 percentiles):

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Estimates: 50% (2.5%, 97.5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept (θ_0)</td>
<td>82.39 (49.56, 120.46)</td>
</tr>
<tr>
<td>AprilTC1 (θ_1)</td>
<td>-0.27 (-0.45, -0.11)</td>
</tr>
<tr>
<td>AprilTC2 (θ_2)</td>
<td>0.17 (0.07, 0.29)</td>
</tr>
<tr>
<td>AprilTC3 (θ_3)</td>
<td>-0.24 (-0.43, -0.08)</td>
</tr>
<tr>
<td>JulyTC1 (θ_4)</td>
<td>-0.04 (-0.25, 0.17)</td>
</tr>
<tr>
<td>JulyTC2 (θ_5)</td>
<td>0.09 (-0.01, 0.19)</td>
</tr>
<tr>
<td>JulyTC3 (θ_6)</td>
<td>0.01 (-0.15, 0.16)</td>
</tr>
<tr>
<td>OctTC1 (θ_7)</td>
<td>-0.43 (-0.68, -0.22)</td>
</tr>
<tr>
<td>OctTC2 (θ_8)</td>
<td>-0.03 (-0.19, 0.14)</td>
</tr>
<tr>
<td>OctTC3 (θ_9)</td>
<td>-0.26 (-0.46, -0.07)</td>
</tr>
<tr>
<td>σ^2</td>
<td>1.358 (0.39, 2.42)</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.00182 (0.00065, 0.0032)</td>
</tr>
<tr>
<td>log(0.05)/ϕ (meters)</td>
<td>1644.19 (932.33, 4606.7)</td>
</tr>
</tbody>
</table>

Covariates and proximity to observed FIA plot will contribute to increase precision of prediction.
Median of posterior predictive distributions
97.5%-2.5% range of posterior predictive distributions
CDF of holdout area’s posterior predictive distributions

Classification of 15 20×20 pixel areas (based on visual inspection of imagery) into non-forest (●), moderately forest (○), and forest (no marker).