Hierarchical Modelling for Spatialtemporal Data

Sudipto Banerjee1 and Andrew O. Finley2

1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A.

2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

July 2, 2009
Specification:

- Again point-referenced vs. areal unit data
- Continuous time vs. discretized time

\Rightarrow association in space, association in time

For point-referenced data, t continuous, Gaussian

$$Y(s, t) = \mu(s, t) + w(s, t) + \epsilon(s, t)$$

non-Gaussian data, $g(EY(s, t)) = \mu(s, t) + w(s, t)$

Don’t treat time as a third coordinate (s, t)

$$\text{Cov}(Y(s, t), Y(s', t')) = C(s - s', t - t')$$
Spatio-temporal Models

Separable form:

\[C(s - s', t - t') = \sigma^2 \rho_1(s - s'; \phi_1) \rho_2(t - t'; \phi_2) \]
Spatio-temporal Models

- **Separable form:**

\[
C(s - s', t - t') = \sigma^2 \rho_1(s - s'; \phi_1)\rho_2(t - t'; \phi_2)
\]

- **Nonseparable form:**
 - Sum of independent separable processes
 - Mixing of separable covariance functions
 - Spectral domain approaches
Time discretized, $Y_t(s), t = 1, 2, \ldots T$
Time discretized, $Y_t(s), t = 1, 2, \ldots T$

Type of data: time series or cross-sectional
• Time discretized, $Y_t(s), t = 1, 2, \ldots, T$

• Type of data: time series or cross-sectional

• For time series data, exploratory analysis:
• Time discretized, $Y_t(s), t = 1, 2, \ldots T$

• Type of data: time series or cross-sectional

• For time series data, exploratory analysis:
 • Arrange into an $n \times T$ matrix Y with entries $Y_t(s_i)$
Spatio-temporal Models

- Time discretized, $Y_t(s), t = 1, 2, \ldots T$

- Type of data: time series or cross-sectional

For time series data, exploratory analysis:

- Arrange into an $n \times T$ matrix Y with entries $Y_t(s_i)$
- Center by row averages of Y yields Y_{rows}

- Sample spatial covariance matrix:
- Sample autocorrelation matrix:
- E, residuals matrix after a regression fitting, Empirical orthogonal functions (EOF)
• Time discretized, $Y_t(s), t = 1, 2, \ldots T$

• Type of data: time series or cross-sectional

• For time series data, exploratory analysis:
 • Arrange into an $n \times T$ matrix Y with entries $Y_t(s_i)$
 • Center by row averages of Y yields Y_{rows}
 • Center by column averages of Y yields Y_{cols}
• Time discretized, $Y_t(s), t = 1, 2, \ldots T$

• Type of data: time series or cross-sectional

• For time series data, exploratory analysis:
 • Arrange into an $n \times T$ matrix Y with entries $Y_t(s_i)$
 • Center by row averages of Y yields Y_{rows}
 • Center by column averages of Y yields Y_{cols}
 • Sample spatial covariance matrix: $\frac{1}{T}Y_{rows}Y_{rows}^T$
Time discretized, $Y_t(s)$, $t = 1, 2, ... T$

Type of data: time series or cross-sectional

For time series data, exploratory analysis:

- Arrange into an $n \times T$ matrix Y with entries $Y_t(s_i)$
- Center by row averages of Y yields Y_{rows}
- Center by column averages of Y yields Y_{cols}
- sample spatial covariance matrix: $\frac{1}{T} Y_{rows} Y_{rows}^T$
- sample autocorrelation matrix: $\frac{1}{n} Y_{cols}^T Y_{cols}$
Time discretized, $Y_t(s), t = 1, 2, \ldots T$

Type of data: time series or cross-sectional

For time series data, exploratory analysis:
- Arrange into an $n \times T$ matrix Y with entries $Y_t(s_i)$
- Center by row averages of Y yields Y_{rows}
- Center by column averages of Y yields Y_{cols}
- sample spatial covariance matrix: $\frac{1}{T}Y_{rows}Y_{rows}^T$
- sample autocorrelation matrix: $\frac{1}{n}Y_{cols}Y_{cols}^T$
- E, residuals matrix after a regression fitting, Empirical orthogonal functions (EOF)
Modeling: \(Y_t(s) = \mu_t(s) + w_t(s) + \epsilon_t(s) \), or perhaps
\[g(E(Y_t(s))) = \mu_t(s) + w_t(s) \]
- **Modeling**: \(Y_t(s) = \mu_t(s) + w_t(s) + \epsilon_t(s) \), or perhaps
 \[g(E(Y_t(s))) = \mu_t(s) + w_t(s) \]

- For \(\epsilon_t(s) \), i.i.d. \(N(0, \tau^2_t) \)
Spatio-temporal Models

Modeling: $Y_t(s) = \mu_t(s) + w_t(s) + \epsilon_t(s)$, or perhaps $g(E(Y_t(s))) = \mu_t(s) + w_t(s)$

For $\epsilon_t(s)$, i.i.d. $N(0, \tau_t^2)$

For $w_t(s)$

- $w_t(s) = \alpha_t + w(s)$
- $w_t(s)$ independent for each t
- $w_t(s) = w_{t-1}(s) + \eta_t(s)$, independent spatial process innovations
Dynamic spatiotemporal models

Measurement Equation

\[Y(s, t) = \mu(s, t) + \epsilon(s, t); \quad \epsilon(s, t) \sim N(0, \sigma^2_\epsilon). \]
\[\mu(s, t) = x(s, t)' \tilde{\beta}(s, t). \]
\[\tilde{\beta}(s, t) = \beta_t + \beta(s, t) \]

Transition Equation

\[\beta_t = \beta_{t-1} + \eta_t, \quad \eta_t \sim N_p(0, \Sigma \eta) \]
\[\beta(s, t) = \beta(s, t-1) + w(s, t). \]