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Areal unit data

Maps of raw standard mortality ratios (SMR) of lung and
esophagus cancer between 1991 and 1998 in Minnesota
counties
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Areal unit data
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Areal unit data
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Areal unit data

Key Issues

Is there spatial pattern? Spatial pattern implies that
observations from units closer to each other are more
similar than those recorded in units farther away.
Do we want to smooth the data? Perhaps to adjust for low
population sizes (or sample sizes) in certain units? How
much do we want to smooth?
Inference for new areal units? Is prediction meaningful
here? If we modify the areal units to new units (e.g. from
zip codes to county values), what can we say about the
new counts we expect for the latter given those for the
former? This is the Modifiable Areal Unit Problem (MAUP)
or Misalignment.
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Proximity matrices

W , entries wij , (wii = 0); choices for wij :

wij = 1 if i, j share a common boundary (possibly a
common vertex)
wij is an inverse distance between units
wij = 1 if distance between units is ≤ K
wij = 1 for m nearest neighbors.

W need not be symmetric.

W̃ : standardize row i by wi+ =
∑

j wij (row stochastic but
need not be symmetric).

W elements often called “weights”; nicer interpretation?
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Proximity matrices

Note that proximity matrices are user-defined.

We can define distance intervals, (0, d1], (d1, d2], and so
on.

First order neighbours: all units within distance d1.

First order proximity matrix W (1). Analogous to W , w(1)
ij = 1

if i and j are first order neighbors; 0 otherwise.

Second order neighbors: all units within distance d2, but
separated by more than d1.

Second order proximity matrix W (2); w(2)
ij = 1 if i and j are

second order neighbors; 0 otherwise

And so on...
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Proximity matrices

There are analogues for areal data of the empirical
correlation function and the variogram.

Moran’s I: analogue of lagged autocorrelation

I =
n
∑

i

∑
j wij(Yi − Ȳ )(Yj − Ȳ )

(
∑

i 6=j wij)(
∑

i(Yi − Ȳ )2

I is not supported on [−1, 1].

Geary’s C: analogue of Durbin-Watson statistic

C =
(n− 1)

∑
i

∑
j wij(Yi − Yj)2∑

i 6=j wij)
∑

i(Yi − Ȳ )2

Both are asymptotically normal if Yi are i.i.d., the first with
mean −1/(n− 1) and the second with mean 1.

Significance testing using a Monte Carlo test, permutation
invariance
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Proximity matrices

The areal correlogram is a useful tool to study spatial
association with areal data.

Working with I, we can replace wij with w(1)
ij taken from

W (1) and compute→ I(1)

Next replace wij with w(2)
ij taken from W (2) and compute

→ I(2), etc.

Plot I(r) vs. r

If there is spatial pattern, we expect I(r) to decline in r
initially and then vary about 0.
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Proximity matrices
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Spatial smoothers

To smooth Yi, replace with Ŷi =
∑

i wijYj
wi+

Note: K-nearest
neighbours (KNN) regression falls within this framework.

More generally,
(1− α)Yi + αŶi

Linear (convex) combination, shrinkage

Model-based smoothing, e.g.,
E(Yi|{Yj , j = 1, 2, ..., n})
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Markov Random Fields

First, consider Y = (y1, y2, ..., yn) and consider the set
{p(yi | yj , j 6= i)}
We know p(y1, y2, ...yn) determines {p(yi|yj , j 6= i)} (full
conditional distributions)
??? Does {p(yi | yj , j 6= i)} determine p(y1, y2, ...yn)? If so,
we call the joint distribution a Markov Random Field.
In general we cannot write down an arbitrary set of
conditionals and assert that they determine the joint
distribution. Example:

Y1 |Y2 ∼ N(α0 + α1Y2, σ
2
1)

Y2 |Y1 ∼ N(β0 + β1Y
3
1 , σ

2
2).

The first equation implies that E[Y1] = α0 + α1E[Y2], i.e.,
E[Y1] is linear in E[Y2]. The second equation implies that
E[Y2] = β0 + β1E[Y 3

1 ], i.e. E[Y2] is linear in E[Y 3
1 ]. Clearly

this isn’t true in general. Hence no joint distribution.
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Markov Random Fields

Also p(y1, . . . , yn) may be improper even if all the full
conditionals are proper.

p(y1, y2) ∝ exp{(y1 − y2)2}

But p(Y2 |Y1) ∝ N(Y2) and p(Y1 |Y2) ∝ N(Y2, 1). Yet the
joint distribution is improper.
Compatibility: Brook’s Lemma. Let y0 = (y10, . . . , yn0) be
any fixed point in the support of p(·).

p(y1, . . . , yn) =
p(y1 | y2, . . . , yn)

p(y10 | y2, . . . , yn)

p(y2 | y10, y3, . . . , yn)

p(y20 | y10, y3, . . . , yn)

. . .
p(yn | y10, . . . , yn−1,0)
p(yn0 | y10, . . . , yn−1,0)

p(y10, . . . , yn0).

If LHS is proper, the fact that it integrates to 1 determines
the normalizing constant!
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Local specifications

Suppose we want:

p(yi | yj , j 6= i) = p(yi | yj ∈ ∂i)

When does the set {p(yi | yj ∈ ∂i)} uniquely determine
p(y1, y2, ...yn)?

To answer this question, we need the following important
concepts:

Clique: A clique is a set of cells such that each element is a
neighbor of every other element. We use notation i ∼ j if i
is a neighbor of j and j is a neighbor of i.
Potential: A potential of order k is a function of k arguments
that is exchangeable in these arguments. The arguments of
the potential would be the values taken by variables
associated with the cells for a clique of size k.
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Local specifications

For clique size say 2, i ∼ j means j ∼ i
For continuous data: Q(yi, yj) = yiyj (⇔ (yi − yj)2)
For binary data:
Q(yi, yj) = I(yi = yj) = yiyj = (1− yi)(1− yj)
Cliques of size 1⇔ independence
Cliques of size 2⇔ pairwise difference form

p(y1, y2, ...yn) ∝ exp

− 1

2τ2

∑
i,j

(yi − yj)2I(i ∼ j)


and therefore p(yi | yj , j 6= i) = N(

∑
j∈∂i yi/mi, τ

2/mi),
where mi is the number of neighbors of i
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Local specifications

Gibbs distribution: p(y1, . . . , yn) is a Gibbs distribution if it is
a function of the yi’s only through potentials on cliques:

p(y1, . . . , yn) ∝ exp{−γ
∑
k

∑
α∈Mk

φ(k)(yα1 , . . . , yαk
)},

where φ(k) is a potential of order k, Mk is the set of all
cliques of size k and is indexed by α, and γ > 0 is a scale
parameter.
Hammersley-Clifford Theorem: If we have a Markov
Random Field (i.e., {p(yi | yj ∈ ∂i)} uniquely determine
p(y1, y2, ...yn)), then the latter is a Gibbs distribution
Geman and Geman (1984) result : If we have a joint Gibbs
distribution, then we have a Markov Random Field
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CAR models

Conditionally Auto-Regressive (CAR) models

Gaussian (autonormal) case

p(yi | yj , j 6= i) = N

∑
j

bijyj , τ
2
i


Using Brook’s Lemma we can obtain

p(y1, y2, ...yn) ∝ exp

{
−1

2
y′D−1(I −B)y

}
where B = {bij} and D is diagonal with Dii = τ2i .
Suggests a multivariate normal distribution with µy = 0 and
ΣY = (I −B)−1D

D−1(I −B) symmetric requires

bij
τ2i

=
bji
τ2j

for all i, j
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CAR models

Returning to W , let bij = wij/wi+ and τ2i = τ2/wi+, so

p(y1, y2, ...yn) ∝ exp{− 1

2τ2
y′(Dw −W )y}

where Dw is diagonal with (Dw)ii = wi+ and thus

p(y1, y2, ...yn) ∝ exp

− 1

2τ2

∑
i 6=j

wij(yi − yj)2


Caution: (Dw −W )1 = 0. Intrinsic autoregressive (IAR)
model; improper, so requires a constraint (e.g.,

∑
i yi = 0)

Not a valid data model, but only as a random effects model!
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CAR models

With τ2 unknown, what should be the power of τ2?
Answer:

p(y1, y2, ...yn) ∝ (
1

τ2
)(n−G)/2 exp{− 1

2τ2
y′(Dw −W )y},

where G is the number of “islands” in the map. In fact,
n−G is the rank of Dw −W .
The impropriety can be remedied in an obvious way.
Redefine the CAR as:

p(y1, y2, ...yn) ∝ |Dw − ρW |1/2 exp{− 1

2τ2
y′(Dw − ρW )y},

where ρ is chosen to make Dw − ρW non-singular. This is
guaranteed if ρ ∈

(
1/λ(1), 1

)
, where λ(1) is the minimum

eigenvalue of D−1/2WD−1/2. In practice, the bound
ρ ∈ (0, 1) is often preferred.
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CAR models

To ρ or not to ρ?

Advantages:
makes distribution proper
adds parametric flexibility
ρ = 0 interpretable as independence

Disadvantages:
why should we expect yi to be a proportion of average of
neighbors - sensible spatial interpretation?
calibration of ρ as a correlation, e.g.,

ρ = 0.80 yields 0.1 ≤ I ≤ 0.15,

ρ = 0.90 yields 0.2 ≤ I ≤ 0.25,

ρ = 0.99 yields I ≤ 0.5

So, used with random effects, scope of spatial pattern may
be limited
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CAR models

Example of a hierarchical model with CAR effects.

Consider the areal data disease mapping model:

Yi | µi
ind∼ Po (Ei e

µi) , where
Yi = observed disease count,
Ei = expected count (known), and
µi = x′iβ + φi; the xi are explanatory variables

The φi capture regional clustering via a conditionally
autoregressive (CAR) prior,

φi | φj 6=i ∼ N
(
φ̄i ,

τ2

mi

)
, where φ̄i =

1

mi

∑
j∈∂i

φj ;

∂i is the set of ‘‘neighbours” of region i, and mi is the
number of these neighbours.
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Comments on CAR models

Comments on CAR models

We specify Σ−1y , not directly modeling association
(Σ−1y )ii = 1/τ2i ; (Σ−1y )ij = 0⇔ cond’l independence
Ad hoc prediction: If

p(y0 | y1, y2, ...yn) = N(
∑
j

w0jyj/w0+, τ
2/w0+)

then p(y0, y1, ...yn) well-defined but not CAR
non-Gaussian case, binary data (autologistic)

p(yi | yj , j 6= i) ∝ exp{φ
∑
j

wijI(yi = yj)}
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SAR models

Simultaneous Auto-Regressive (SAR) models

We may write the CAR model as:

y = By + ε⇒ (I −B)y = ε;

Since y ∼ N(0, (I −B)−1D), we have

ε ∼ N(0, D(I −B)′).

Instead of letting y induce the distribution of ε, let ε induce
a distribution for y. Letting ε ∼ N(0, D̃), where D̃ is
diagonal, D̃ii = σ2i and let:

yi =

n∑
j=1

bijyj + εi.

Assuming (I −B)−1 exists, we obtain:

y ∼ N
(

0, (I −B)−1D̃(I −B)′
−1
)
.
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SAR models

Often we take B = ρW . If ρ ∈ (1/λ(1), 1/λ(n)), where λ(1)
and λ(n) are the minimum and maximum eigenvalues of
W . This ensures (I − ρW )−1 exists.
Alternatively, we can replace W with W̃ = {wij/wi+}
where wi+ is the sum of the elements in the i-th row of W .
Then |ρ| < 1 ensures existence of (I − ρW̃ )−1.
Often SAR models are also applied to point-referenced
data where W is taken to be the inter-point distance.

24 UNL Department of Statstics Spatio-temporal Workshop



SAR models

Two variants:
The SAR “lag model”:

y = By +Xβ + ε.

The SAR “residual” or “error model”:

(I −B)(y−Xβ) = ε;⇒ y = By + (I −B)Xβ + ε.

SAR models are well suited to maximum likelihood
estimation but not at all for MCMC fitting of Bayesian
models. Because it is difficult to introduce SAR random
effects (in the CAR framework this is easy because of the
hierarchical conditional representation).
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