Hierarchical Modelling for Univariate Spatial Data

Sudipto Banerjee1 and Andrew O. Finley2

1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.
2 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A.

October 15, 2012
Spatial Domain
Algorithmic Modelling

- Spatial surface observed at finite set of locations
 \[\mathcal{I} = \{s_1, s_2, \ldots, s_n\} \]
- Tessellate the spatial domain (usually with data locations as vertices)
- Fit an interpolating polynomial:
 \[f(s) = \sum_i w_i(\mathcal{I}; s) f(s_i) \]

- “Interpolate” by reading off \(f(s_0) \).
- Issues:
 - Sensitivity to tessellations
 - Choices of multivariate interpolators
 - Numerical error analysis
What is a spatial process?
Simple linear model

\[Y(s) = \mu(s) + \epsilon(s), \]

- **Response:** \(Y(s) \) at location \(s \)
- **Mean:** \(\mu = x^T(s)\beta \)
- **Error:** \(\epsilon(s) \overset{iid}{\sim} N(0, \tau^2) \)
Simple linear model

\[Y(s) = \mu(s) + \epsilon(s), \]

Assumptions regarding \(\epsilon(s) \):

- \(\epsilon(s) \) iid \(\sim N(0, \tau^2) \)
Simple linear model

\[Y(s) = \mu(s) + \epsilon(s), \]

Assumptions regarding \(\epsilon(s) \):

- \(\epsilon(s) \) iid \(\sim N(0, \tau^2) \)
- \(\epsilon(s_i) \) and \(\epsilon(s_j) \) are uncorrelated for all \(i \neq j \)
Spatial Gaussian processes (GP):
- Say $w(s) \sim GP(0, \sigma^2 \rho(\cdot))$ and
\[
Cov(w(s_1), w(s_2)) = \sigma^2 \rho(\phi; \|s_1 - s_2\|)
\]
Spatial Gaussian processes (GP):

- Say $w(s) \sim GP(0, \sigma^2 \rho(\cdot))$ and

 $$\text{Cov}(w(s_1), w(s_2)) = \sigma^2 \rho (\phi; \|s_1 - s_2\|)$$

- Let $w = [w(s_i)]_{i=1}^n$, then

 $$w \sim N(0, \sigma^2 R(\phi)), \text{ where } R(\phi) = [\rho(\phi; \|s_i - s_j\|)]_{i,j=1}^n$$
Realization of a Gaussian process:

- Changing ϕ and holding $\sigma^2 = 1$:

 $$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 R(\phi)), \text{ where}$$

 $$R(\phi) = \left[\rho(\phi; \| \mathbf{s}_i - \mathbf{s}_j \|) \right]_{i,j=1}^n$$

- Correlation model for $R(\phi)$:
 - e.g., exponential decay
 - $\rho(\phi; t) = \exp(-\phi t)$ if $t > 0$
 - Other valid models e.g., Gaussian, Spherical, Matérn.

 Effective range, $t_0 = \ln(0.05)/\phi \approx 3/\phi$.8
Realization of a Gaussian process:

- Changing ϕ and holding $\sigma^2 = 1$:
 \[
 \mathbf{w} \sim N(\mathbf{0}, \sigma^2 R(\phi)), \text{ where }
 R(\phi) = \left[\rho(\phi; \| \mathbf{s}_i - \mathbf{s}_j \|) \right]_{i,j=1}^n
 \]

- Correlation model for $R(\phi)$:
 e.g., exponential decay
 \[
 \rho(\phi; t) = \exp(-\phi t) \text{ if } t > 0.
 \]
Realization of a Gaussian process:

- Changing ϕ and holding $\sigma^2 = 1$:
 \[
 w \sim N(0, \sigma^2 R(\phi)), \quad \text{where}
 \]
 \[
 R(\phi) = [\rho(\phi; \|s_i - s_j\|)]_{i,j=1}^n
 \]

- Correlation model for $R(\phi)$: e.g., exponential decay
 \[
 \rho(\phi; t) = \exp(-\phi t) \quad \text{if} \ t > 0.
 \]

- Other valid models e.g., Gaussian, Spherical, Matérn.

- Effective range,
 \[
 t_0 = \ln(0.05)/\phi \approx 3/\phi
 \]
$w \sim N(0, \sigma_w^2 R(\phi))$ defines complex spatial dependence structures.

E.g., anisotropic Matérn correlation function:

$$
\rho(s_i, s_j; \phi) = \left(\frac{1}{\Gamma(\nu)}2^{\nu-1}\right) \left(2\sqrt{\nu d_{ij}}\right)^\nu \kappa_\nu \left(2\sqrt{\nu d_{ij}}\right),
$$

where

$$
d_{ij} = (s_i - s_j)' \Sigma^{-1} (s_i - s_j), \Sigma = G(\psi)\Lambda^2 G(\psi)',
$$

Thus, $\phi = (\nu, \psi, \Lambda)$.

Simulated

Predicted
Univariate spatial models

Univariate spatial regression

Simple linear model + random spatial effects

\[Y(s) = \mu(s) + w(s) + \epsilon(s), \]

- **Response**: \(Y(s) \) at some site
- **Mean**: \(\mu = x^T(s)\beta \)
- **Spatial random effects**: \(w(s) \sim GP(0, \sigma^2 \rho(\phi; \|s_1 - s_2\|)) \)
- **Non-spatial variance**: \(\epsilon(s) \overset{iid}{\sim} N(0, \tau^2) \)
Hierarchical modelling

First stage:

\[y \mid \beta, w, \tau^2 \sim \prod_{i=1}^{n} N(Y(s_i) \mid x^T(s_i)\beta + w(s_i), \tau^2) \]
Hierarchical modelling

- First stage:

\[y | \beta, w, \tau^2 \sim \prod_{i=1}^{n} N(Y(s_i) | x^T(s_i)\beta + w(s_i), \tau^2) \]

- Second stage:

\[w | \sigma^2, \phi \sim N(0, \sigma^2 R(\phi)) \]
Hierarchical modelling

- First stage:

\[y \mid \beta, w, \tau^2 \sim \prod_{i=1}^{n} N(Y(s_i) \mid x^T(s_i)\beta + w(s_i), \tau^2) \]

- Second stage:

\[w \mid \sigma^2, \phi \sim N(0, \sigma^2 R(\phi)) \]

- Third stage: Priors on \(\Omega = (\beta, \tau^2, \sigma^2, \phi) \)
Hierarchical modelling

- **First stage:**
 \[y | \beta, w, \tau^2 \sim \prod_{i=1}^{n} N(Y(s_i) | x^T(s_i)\beta + w(s_i), \tau^2) \]

- **Second stage:**
 \[w | \sigma^2, \phi \sim N(0, \sigma^2 R(\phi)) \]

- **Third stage:** Priors on \(\Omega = (\beta, \tau^2, \sigma^2, \phi) \)
 - **Marginalized likelihood:**
 \[y | \Omega \sim N(X\beta, \sigma^2 R(\phi) + \tau^2 I) \]
Hierarchical modelling

- **First stage:**
 \[y | \beta, w, \tau^2 \sim \prod_{i=1}^{n} N(Y(s_i) | x^T(s_i)\beta + w(s_i), \tau^2) \]

- **Second stage:**
 \[w | \sigma^2, \phi \sim N(0, \sigma^2 R(\phi)) \]

- **Third stage:** Priors on \(\Omega = (\beta, \tau^2, \sigma^2, \phi) \)
- **Marginalized likelihood:**
 \[y | \Omega \sim N(X\beta, \sigma^2 R(\phi) + \tau^2 I) \]

- **Note:** Spatial process parametrizes \(\Sigma \):
 \[y = X\beta + \epsilon, \quad \epsilon \sim N(0, \Sigma), \quad \Sigma = \sigma^2 R(\phi) + \tau^2 I \]
Bayesian Computations

Choice: Fit $[y | \Omega] \times [\Omega]$ or $[y | \beta, w, \tau^2] \times [w | \sigma^2, \phi] \times [\Omega]$.

But what about $R^{-1}(\phi)$?? EXPENSIVE!
Bayesian Computations

- Choice: Fit \([y|\Omega] \times [\Omega]\) or \([y|\beta, w, \tau^2] \times [w|\sigma^2, \phi] \times [\Omega]\).

- Conditional model:
 - conjugate full conditionals for \(\sigma^2\), \(\tau^2\) and \(w\) – easier to program.
Bayesian Computations

- Choice: Fit \([y|\Omega] \times [\Omega]\) or \([y|\beta, w, \tau^2] \times [w|\sigma^2, \phi] \times [\Omega]\).

- Conditional model:
 - conjugate full conditionals for \(\sigma^2, \tau^2\) and \(w\) – easier to program.

- Marginalized model:
 - need Metropolis or Slice sampling for \(\sigma^2, \tau^2\) and \(\phi\). Harder to program.
 - But, reduced parameter space \(\Rightarrow\) faster convergence
 - \(\sigma^2 R(\phi) + \tau^2 I\) is more stable than \(\sigma^2 R(\phi)\).
Bayesian Computations

- **Choice:** Fit $[y|\Omega] \times [\Omega]$ or $[y|\beta, w, \tau^2] \times [w|\sigma^2, \phi] \times [\Omega]$.

- **Conditional model:**
 - conjugate full conditionals for σ^2, τ^2 and w – easier to program.

- **Marginalized model:**
 - need Metropolis or Slice sampling for σ^2, τ^2 and ϕ. Harder to program.
 - But, reduced parameter space \Rightarrow faster convergence
 - $\sigma^2 R(\phi) + \tau^2 I$ is more stable than $\sigma^2 R(\phi)$.

- But what about $R^{-1}(\phi)$?? EXPENSIVE!
Where are the \(w \)'s?

- Interest often lies in the spatial surface \(w\mid y \).
Where are the w's?

- Interest often lies in the spatial surface $w|y$.
- They are recovered from

$$[w|y, X] = \int [w|\Omega, y, X] \times [\Omega|y, X]d\Omega$$

using posterior samples:
Where are the w's?

- Interest often lies in the spatial surface $w|y$.

- They are recovered from

$$\begin{align*}
[w|y, X] &= \int [w|\Omega, y, X] \times [\Omega|y, X] d\Omega
\end{align*}$$

using posterior samples:

- Obtain $\Omega^{(1)}, \ldots, \Omega^{(G)} \sim [\Omega|y, X]$
- For each $\Omega^{(g)}$, draw $w^{(g)} \sim [w|\Omega^{(g)}, y, X]$

NOTE: With Gaussian likelihoods $[w|\Omega, y, X]$ is also Gaussian. With other likelihoods this may not be easy and often the conditional updating scheme is preferred.
Where are the w’s?

- Interest often lies in the spatial surface $w | y$.

- They are recovered from

$$[w | y, X] = \int [w | \Omega, y, X] \times [\Omega | y, X] d\Omega$$

using posterior samples:

- Obtain $\Omega^{(1)}, \ldots, \Omega^{(G)} \sim [\Omega | y, X]$
- For each $\Omega^{(g)}$, draw $w^{(g)} \sim [w | \Omega^{(g)}, y, X]$

NOTE: With Gaussian likelihoods $[w | \Omega, y, X]$ is also Gaussian. With other likelihoods this may not be easy and often the conditional updating scheme is preferred.
Residual plot: $[w(s)|y]$
Another look: $[w(s) | y]$
Another look: $[w(s) | y]$
Often we need to predict \(Y(s) \) at a *new* set of locations \(\{\tilde{s}_0, \ldots, \tilde{s}_m\} \) with associated predictor matrix \(\tilde{X} \).

Sample from predictive distribution:

\[
[\tilde{y}|y, X, \tilde{X}] = \int [\tilde{y}, \Omega|y, X, \tilde{X}] d\Omega
\]

\[
= \int [\tilde{y}|y, \Omega, X, \tilde{X}] \times [\Omega|y, X] d\Omega,
\]

[\(\tilde{y}|y, \Omega, X, \tilde{X} \)] is multivariate normal. Sampling scheme:

- Obtain \(\Omega^{(1)}, \ldots, \Omega^{(G)} \) \(\sim [\Omega|y, X] \)
- For each \(\Omega^{(g)} \), draw \(\tilde{y}^{(g)} \) \(\sim [\tilde{y}|y, \Omega^{(g)}, X, \tilde{X}] \).
Prediction: Summary of $[Y(s)|y]$
Colorado data illustration

- Modelling temperature: 507 locations in Colorado.
- Simple spatial regression model:
 \[Y(s) = \mathbf{x}^T(s)\beta + w(s) + \epsilon(s) \]
 \[w(s) \sim GP(0, \sigma^2 \rho(\cdot; \phi, \nu)); \epsilon(s) \overset{iid}{\sim} N(0, \tau^2) \]

<table>
<thead>
<tr>
<th>Parameters</th>
<th>50% (2.5%, 97.5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2.827 (2.131, 3.866)</td>
</tr>
<tr>
<td>[Elevation]</td>
<td>-0.426 (-0.527, -0.333)</td>
</tr>
<tr>
<td>Precipitation</td>
<td>0.037 (0.002, 0.072)</td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>0.134 (0.051, 1.245)</td>
</tr>
<tr>
<td>(\phi)</td>
<td>7.39E-3 (4.71E-3, 51.21E-3)</td>
</tr>
<tr>
<td>Range</td>
<td>278.2 (38.8, 476.3)</td>
</tr>
<tr>
<td>(\tau^2)</td>
<td>0.051 (0.022, 0.092)</td>
</tr>
</tbody>
</table>
Temperature residual map
Elevation map
Residual map with elev. as covariate