Hierarchical Modelling for Multivariate Spatial Data

Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis

February 15, 2011
Point-referenced spatial data often come as **multivariate measurements** at each location.
Point-referenced spatial data often come as multivariate measurements at each location.

Examples:
- Environmental monitoring: stations yield measurements on ozone, NO, CO, and PM$_{2.5}$.
Point-referenced spatial data often come as multivariate measurements at each location.

Examples:
- Environmental monitoring: stations yield measurements on ozone, NO, CO, and PM\textsubscript{2.5}.
- Community ecology: assemblages of plant species due to water availability, temperature, and light requirements.
Point-referenced spatial data often come as **multivariate measurements** at each location.

Examples:

- **Environmental monitoring:** stations yield measurements on ozone, NO, CO, and PM$_{2.5}$.
- **Community ecology:** assemblages of plant species due to water availability, temperature, and light requirements.
- **Forestry:** measurements of stand characteristics age, total biomass, and average tree diameter.
Point-referenced spatial data often come as multivariate measurements at each location.

Examples:

- **Environmental monitoring**: stations yield measurements on ozone, NO, CO, and PM$_{2.5}$.
- **Community ecology**: assemblages of plant species due to water availability, temperature, and light requirements.
- **Forestry**: measurements of stand characteristics age, total biomass, and average tree diameter.
- **Atmospheric modeling**: at a given site we observe surface temperature, precipitation and wind speed.
Point-referenced spatial data often come as **multivariate measurements** at each location.

Examples:
- **Environmental monitoring:** stations yield measurements on ozone, NO, CO, and PM$_{2.5}$.
- **Community ecology:** assemblages of plant species due to water availability, temperature, and light requirements.
- **Forestry:** measurements of stand characteristics age, total biomass, and average tree diameter.
- **Atmospheric modeling:** at a given site we observe surface temperature, precipitation and wind speed.

We anticipate dependence between measurements.
Point-referenced spatial data often come as multivariate measurements at each location.

Examples:
- **Environmental monitoring**: stations yield measurements on ozone, NO, CO, and PM$_{2.5}$.
- **Community ecology**: assemblages of plant species due to water availability, temperature, and light requirements.
- **Forestry**: measurements of stand characteristics age, total biomass, and average tree diameter.
- **Atmospheric modeling**: at a given site we observe surface temperature, precipitation and wind speed.

We anticipate dependence between measurements at a particular location.
Point-referenced spatial data often come as multivariate measurements at each location.

Examples:

- Environmental monitoring: stations yield measurements on ozone, NO, CO, and PM$_{2.5}$.
- Community ecology: assemblages of plant species due to water availability, temperature, and light requirements.
- Forestry: measurements of stand characteristics age, total biomass, and average tree diameter.
- Atmospheric modeling: at a given site we observe surface temperature, precipitation and wind speed.

We anticipate dependence between measurements

- at a particular location
- across locations
Multivariate spatial modelling

Each location contains \(m \) spatial regressions

\[
Y_k(s) = \mu_k(s) + w_k(s) + \epsilon_k(s), \ k = 1, \ldots, m.
\]

- **Mean:** \(\mu(s) = [\mu_k(s)]_{k=1}^m = [x_k^T(s)\beta_k]_{k=1}^m \)

- **Cov:** \(\mathbf{w}(s) = [w_k(s)]_{k=1}^m \sim MVGP(\mathbf{0}, \Gamma_w(\cdot, \cdot)) \)

\[
\Gamma_w(s, s') = [\text{Cov}(w_k(s), w_{k'}(s'))]_{k,k'=1}^m
\]

- **Error:** \(\epsilon(s) = [\epsilon_k(s)]_{k=1}^m \sim MVN(\mathbf{0}, \Psi) \)

- \(\Psi \) is an \(m \times m \) p.d. matrix, e.g. usually \(\text{Diag}(\tau_k^2)_{k=1}^m \).
\(\mathbf{w}(\mathbf{s}) \sim MVGP(\mathbf{0}, \Gamma_{\mathbf{w}}(\cdot)) \) with

\[
\Gamma_{\mathbf{w}}(\mathbf{s}, \mathbf{s}') = [\text{Cov}(w_k(\mathbf{s}), w_{k'}(\mathbf{s}'))]_{k, k'}^{m=1}
\]

Example: with \(m = 2 \)

\[
\Gamma_{\mathbf{w}}(\mathbf{s}, \mathbf{s}') = \begin{pmatrix}
\text{Cov}(w_1(\mathbf{s}), w_1(\mathbf{s}')) & \text{Cov}(w_1(\mathbf{s}), w_2(\mathbf{s}')) \\
\text{Cov}(w_2(\mathbf{s}), w_1(\mathbf{s}')) & \text{Cov}(w_2(\mathbf{s}), w_2(\mathbf{s}'))
\end{pmatrix}
\]

For finite set of locations \(\mathcal{S} = \{\mathbf{s}_1, \ldots, \mathbf{s}_n\} \):

\[
\text{Var} (\left[\mathbf{w}(\mathbf{s}_i)\right]_{i=1}^{n}) = \Sigma_{\mathbf{w}} = [\Gamma_{\mathbf{w}}(\mathbf{s}_i, \mathbf{s}_j)]_{i,j=1}^{n}
\]
Properties:

- \(\Gamma_w(s', s) = \Gamma_w^T(s, s') \)
- \(\lim_{s \to s'} \Gamma_w(s, s') \) is p.d. and \(\Gamma_w(s, s) = \text{Var}(w(s)) \).
- For sites in any finite collection \(\mathcal{S} = \{s_1, \ldots, s_n\} \):
 \[
 \sum_{i=1}^{n} \sum_{j=1}^{n} u_i^T \Gamma_w(s_i, s_j) u_j \geq 0 \quad \text{for all } u_i, u_j \in \mathbb{R}^m.
 \]

- Any \textit{valid} \(\Gamma_w \) must satisfy the above conditions.
- The last property implies that \(\Sigma_w \) is p.d.
- In complete generality:
 - \(\Gamma_w(s, s') \) need \textit{not} be symmetric.
 - \(\Gamma_w(s, s') \) need \textit{not} be p.d. for \(s \neq s' \).
Moving average or kernel convolution of a process:

- Let \(Z(\mathbf{s}) \sim GP(0, \rho(\cdot)) \). Use kernels to form:

\[
 w_j(\mathbf{s}) = \int \kappa_j(\mathbf{u}) Z(\mathbf{s} + \mathbf{u}) d\mathbf{u} = \int \kappa_j(\mathbf{s} - \mathbf{s}') Z(\mathbf{s}') d\mathbf{s}'
\]

- \(\Gamma_w(\mathbf{s} - \mathbf{s}') \) has \((i, j)\)-th element:

\[
 [\Gamma_w(\mathbf{s} - \mathbf{s}')]_{i,j} = \int \int \kappa_i(\mathbf{s} - \mathbf{s}' + \mathbf{u}) \kappa_j(\mathbf{u}') \rho(\mathbf{u} - \mathbf{u}') d\mathbf{u} d\mathbf{u}'
\]

Convolution of Covariance Functions:

- \(\rho_1, \rho_2, \ldots, \rho_m \) are valid covariance functions. Form:

\[
 [\Gamma_w(\mathbf{s} - \mathbf{s}')]_{i,j} = \int \rho_i(\mathbf{s} - \mathbf{s}' - \mathbf{t}) \rho_j(\mathbf{t}) d\mathbf{t}.
\]
Constructive approach

- Let $v_k(s) \sim GP(0, \rho_k(s, s'))$, for $k = 1, \ldots, m$ be m independent GP’s with unit variance.
- Form the simple multivariate process $v(s) = [v_k(s)]_{k=1}^m:$
 \[
 v(s) \sim MVGP(0, \Gamma_v(\cdot, \cdot))
 \]
 with $\Gamma_v(s, s') = \text{Diag}(\rho_k(s, s'))_{k=1}^m$.
- Assume $w(s) = A(s)v(s)$ arises as a \textit{space-varying} linear transformation of $v(s)$. Then:
 \[
 \Gamma_w(s, s') = A(s)\Gamma_v(s, s')A^T(s')
 \]
 is a valid cross-covariance function.
Constructive approach, contd.

- When $s = s'$, $\Gamma_v(s, s) = I_m$, so:

$$\Gamma_w(s, s) = A(s)A^T(s)$$

- $A(s)$ identifies with any square-root of $\Gamma_w(s, s)$. Can be taken as lower-triangular (Cholesky).

- $A(s)$ is unknown!
 - Should we first model $A(s)$ to obtain $\Gamma_w(s, s)$?
 - Or should we model $\Gamma_w(s, s')$ first and derive $A(s)$?
 - $A(s)$ is completely determined from within-site associations.
Constructive approach, contd.

- If $A(s) = A$:
 - $w(s)$ is stationary when $v(s)$ is.
 - $\Gamma_w(s, s')$ is symmetric.
 - $\Gamma_v(s, s') = \rho(s, s')I_m \Rightarrow \Gamma_w = \rho(s, s')AA^T$

- Last specification is called intrinsic and leads to separable models:

$$\Sigma_w = H(\phi) \otimes \Lambda; \; \Lambda = AA^T$$
Multivariate spatial modelling

Hierarchical modelling

Let \(y = [Y(s_i)]_{i=1}^{n} \) and \(w = [W(s_i)]_{i=1}^{n} \).

First stage:

\[
\begin{align*}
 y | \beta, w, \Psi & \sim \prod_{i=1}^{n} MVN \left(Y(s_i) | X(s_i)^T \beta + w(s_i), \Psi \right)
\end{align*}
\]
Let \(y = [Y(s_i)]_{i=1}^n \) and \(w = [W(s_i)]_{i=1}^n \).

First stage:

\[
y \mid \beta, w, \Psi \sim \prod_{i=1}^n \text{MVN} \left(Y(s_i) \mid X(s_i)^T \beta + w(s_i), \Psi \right)
\]

Second stage:

\[
w \mid \theta \sim \text{MVN}(0, \Sigma_w(\Phi))
\]

where \(\Sigma_w(\Phi) = [\Gamma_w(s_i, s_j; \Phi)]_{i,j=1}^n \).
Multivariate spatial modelling

First stage:

\[y \mid \beta, w, \Psi \sim \prod_{i=1}^{n} \text{MVN} \left(Y(s_i) \mid X(s_i)^T \beta + w(s_i), \Psi \right) \]

Second stage:

\[w \mid \theta \sim \text{MVN} \left(0, \Sigma_w(\Phi) \right) \]

where \(\Sigma_w(\Phi) = \left[\Gamma_w(s_i, s_j; \Phi) \right]_{i,j=1}^{n} \).

Third stage: Priors on \(\Omega = (\beta, \Psi, \Phi) \).
Let \(y = [Y(s_i)]_{i=1}^n \) and \(w = [W(s_i)]_{i=1}^n \).

First stage:

\[
y \mid \beta, w, \Psi \sim \prod_{i=1}^n MVN \left(Y(s_i) \mid X(s_i)^T \beta + w(s_i), \Psi \right)
\]

Second stage:

\[
w \mid \theta \sim MVN(0, \Sigma_w(\Phi))
\]

where \(\Sigma_w(\Phi) = [\Gamma_w(s_i, s_j; \Phi)]_{i,j=1}^n \).

Third stage: Priors on \(\Omega = (\beta, \Psi, \Phi) \).

Marginalized likelihood:

\[
y \mid \beta, \theta, \Psi \sim MVN \left(X\beta, \Sigma_w(\Phi) + I \otimes \Psi \right)
\]
Choice: Fit as $[y|\Omega] \times [\Omega]$ or as $[y|\beta, w, \Psi] \times [w|\Phi] \times [\Omega]$.

Conditional model: Conjugate distributions are available for Ψ and other variance parameters. Easy to program.

Marginalized model: need Metropolis or Slice sampling for most variance-covariance parameters. Harder to program. But reduced parameter space (no w’s) results in faster convergence $\Sigma w(\Phi) + I \otimes \Psi$ is more stable than $\Sigma w(\Phi)$.

But what about $\Sigma^{-1} w(\Phi)$?? Matrix inversion is EXPENSIVE $O(n^3)$.

Geography 890
Choice: Fit as $[y|\Omega] \times [\Omega]$ or as $[y|\beta, w, \Psi] \times [w|\Phi] \times [\Omega]$.

Conditional model:
- Conjugate distributions are available for Ψ and other variance parameters. Easy to program.
Choice: Fit as \(\left[y | \Omega \right] \times [\Omega] \) or as \(\left[y | \beta, w, \Psi \right] \times [w | \Phi] \times [\Omega] \).

Conditional model:
- Conjugate distributions are available for \(\Psi \) and other variance parameters. Easy to program.

Marginalized model:
- need Metropolis or Slice sampling for most variance-covariance parameters. Harder to program.
- But reduced parameter space (no \(w \)'s) results in faster convergence
- \(\Sigma_w(\Phi) + I \otimes \Psi \) is more stable than \(\Sigma_w(\Phi) \).
Choice: Fit as \([y|\Omega] \times [\Omega]\) or as \([y|\beta, w, \Psi] \times [w|\Phi] \times [\Omega]\).

Conditional model:
- Conjugate distributions are available for \(\Psi\) and other variance parameters. Easy to program.

Marginalized model:
- need Metropolis or Slice sampling for most variance-covariance parameters. Harder to program.
- But reduced parameter space (no \(w\)'s) results in faster convergence
- \(\Sigma_w(\Phi) + I \otimes \Psi\) is more stable than \(\Sigma_w(\Phi)\).

But what about \(\Sigma_w^{-1}(\Phi)\)?? Matrix inversion is EXPENSIVE \(O(n^3)\).
Recovering the w’s?

- Interest often lies in the spatial surface $w|y$.

NOTE: With Gaussian likelihoods $[w|\Omega,y,X]$ is also Gaussian. With other likelihoods this may not be easy and often the conditional updating scheme is preferred.
 Recovering the w’s?

- Interest often lies in the spatial surface $w|y$.
- They are recovered from

$$[w|y, X] = \int [w|\Omega, y, X] \times [\Omega|y, X] d\Omega$$

using posterior samples:
Recovering the w’s?

- Interest often lies in the spatial surface $w|y$.
- They are recovered from

$$[w|y, X] = \int [w|\Omega, y, X] \times [\Omega|y, X] \, d\Omega$$

using posterior samples:

- Obtain $\Omega^{(1)}, \ldots, \Omega^{(G)} \sim [\Omega|y, X]$
Recovering the \(\mathbf{w} \)'s?

- Interest often lies in the spatial surface \(\mathbf{w} | \mathbf{y} \).
- They are recovered from

\[
[\mathbf{w} | \mathbf{y}, X] = \int [\mathbf{w} | \Omega, \mathbf{y}, X] \times [\Omega | \mathbf{y}, X] d\Omega
\]

using posterior samples:
- Obtain \(\Omega^{(1)}, \ldots, \Omega^{(G)} \sim [\Omega | \mathbf{y}, X] \)
- For each \(\Omega^{(g)} \), draw \(\mathbf{w}^{(g)} \sim [\mathbf{w} | \Omega^{(g)}, \mathbf{y}, X] \)
Recovering the w’s?

- Interest often lies in the spatial surface $w|y$.
- They are recovered from

$$[w|y, X] = \int [w|\Omega, y, X] \times [\Omega|y, X] d\Omega$$

using posterior samples:
- Obtain $\Omega^{(1)}, \ldots, \Omega^{(G)} \sim [\Omega|y, X]$.
- For each $\Omega^{(g)}$, draw $w^{(g)} \sim [w|\Omega^{(g)}, y, X]$.

NOTE: With Gaussian likelihoods $[w|\Omega, y, X]$ is also Gaussian. With other likelihoods this may not be easy and often the conditional updating scheme is preferred.
Often we need to predict $Y(\mathbf{s})$ at a new set of locations $\{\tilde{s}_0, \ldots, \tilde{s}_m\}$ with associated predictor matrix \tilde{X}.

Sample from predictive distribution:

$$[ilde{y}|y, X, \tilde{X}] = \int [\tilde{y}, \Omega|y, X, \tilde{X}] d\Omega$$

$$= \int [\tilde{y}|y, \Omega, X, \tilde{X}] \times [\Omega|y, X] d\Omega,$$

$[\tilde{y}|y, \Omega, X, \tilde{X}]$ is multivariate normal. Sampling scheme:

- Obtain $\Omega^{(1)}, \ldots, \Omega^{(G)} \sim [\Omega|y, X]$
- For each $\Omega^{(g)}$, draw $\tilde{y}^{(g)} \sim [\tilde{y}|y, \Omega^{(g)}, X, \tilde{X}]$.
Illustration from:

Slight digression – why we fit a model:

- Association between response and covariates, β, (e.g., ecological interpretation)
- Residual spatial and/or non-spatial associations and patterns (i.e., given covariates)
- Subsequent prediction
Study objectives:

- Evaluate methods for multi-source forest attribute mapping
- Find the “best” model, given the data
- Produce maps of biomass and uncertainty, by tree species
Study objectives:
- Evaluate methods for multi-source forest attribute mapping
- Find the “best” model, given the data
- Produce maps of biomass and uncertainty, by tree species

Study area:
- USDA FS Bartlett Experimental Forest (BEF), NH
- 1,053 ha heavily forested
- Major tree species: American beech (BE), eastern hemlock (EH), red maple (RM), sugar maple (SM), and yellow birch (YB)
Bartlett Experimental Forest

Image provided by www.fs.fed.us/ne/durham/4155/bartlett
Response variables:

- Metric tons of total tree biomass per ha
- Measured on $437 \frac{1}{10}$ ha plots
- Models fit using random subset of 218 plots
- Prediction at remaining 219 plots
Covariates

- DEM derived elevation and slope
- Spring, Summer, Fall Landsat ETM+ Tasseled Cap features (brightness, greeness, wetness)
Candidate models

Each model includes 55 covariates and 5 intercepts, therefore, X^T is 1090×60.

Different specifications of variance structures:

1. Non-spatial multivariate
2. Diag(Ψ) = τ^2
3. Diag(K), same ϕ
4. Diag(Ψ)
5. K, different ϕ, Diag(Ψ)
6. K, different ϕ, Ψ
Candidate models

Each model includes 55 covariates and 5 intercepts, therefore, X^T is 1090×60.

Different specifications of variance structures:

- **Non-spatial multivariate** $Diag(\Psi) = \tau^2$
Candidate models

Each model includes 55 covariates and 5 intercepts, therefore, X^T is 1090×60.

Different specifications of variance structures:

1. Non-spatial multivariate $\text{Diag}(\Psi) = \tau^2$

2. $\text{Diag}(K)$, same ϕ, $\text{Diag}(\Psi)$
Candidate models

Each model includes 55 covariates and 5 intercepts, therefore, X^T is 1090×60.

Different specifications of variance structures:

1. Non-spatial multivariate $Diag(\Psi) = \tau^2$

2. $Diag(K)$, same ϕ, $Diag(\Psi)$

3. K, same ϕ, $Diag(\Psi)$
Candidate models

Each model includes 55 covariates and 5 intercepts, therefore, X^T is 1090×60.

Different specifications of variance structures:

1. Non-spatial multivariate $\text{Diag}(\Psi) = \tau^2$
2. $\text{Diag}(K)$, same ϕ, $\text{Diag}(\Psi)$
3. K, same ϕ, $\text{Diag}(\Psi)$
4. $\text{Diag}(K)$, different ϕ, $\text{Diag}(\Psi)$
Candidate models

Each model includes 55 covariates and 5 intercepts, therefore, X^T is 1090×60.

Different specifications of variance structures:

1. Non-spatial multivariate $Diag(\Psi) = \tau^2$
2. $Diag(K)$, same ϕ, $Diag(\Psi)$
3. K, same ϕ, $Diag(\Psi)$
4. $Diag(K)$, different ϕ, $Diag(\Psi)$
5. K, different ϕ, $Diag(\Psi)$
Candidate models

Each model includes 55 covariates and 5 intercepts, therefore, X^T is 1090×60.

Different specifications of variance structures:

1. Non-spatial multivariate $\text{Diag}(\Psi) = \tau^2$

2. $\text{Diag}(K)$, same ϕ, $\text{Diag}(\Psi)$

3. K, same ϕ, $\text{Diag}(\Psi)$

4. $\text{Diag}(K)$, different ϕ, $\text{Diag}(\Psi)$

5. K, different ϕ, $\text{Diag}(\Psi)$

6. K, different ϕ, Ψ
Model comparison

Deviance Information Criterion (DIC):

\[D(\Omega) = -2 \log L(Data | \Omega) \]

\[D(\Omega) = E_{\Omega|Y}[D(\Omega)] \]

\[p_D = D(\Omega) - D(\bar{\Omega}); \quad \bar{\Omega} = E_{\Omega|Y}[\Omega] \]

\[DIC = D(\Omega) + p_D. \]

Lower DIC is better.
Model comparison

Deviance Information Criterion (DIC):

\[
D(\Omega) = -2 \log L(Data| \Omega)
\]

\[
\overline{D(\Omega)} = E_{\Omega|Y}[D(\Omega)]
\]

\[
p_D = \overline{D(\Omega)} - D(\bar{\Omega}); \bar{\Omega} = E_{\Omega|Y}[\Omega]
\]

\[
DIC = \overline{D(\Omega)} + p_D.
\]

Lower DIC is better.

<table>
<thead>
<tr>
<th>Model</th>
<th>(p_D)</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35</td>
<td>8559</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>8543</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>8521</td>
</tr>
<tr>
<td>4</td>
<td>33</td>
<td>8536</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
<td>8505</td>
</tr>
<tr>
<td>6</td>
<td>38</td>
<td>8507</td>
</tr>
</tbody>
</table>
Selected model

- Model 5: K, different ϕ, $Diag(\Psi)$
- Parameters: $K = 15$, $\phi = 5$, $Diag(\Psi) = 5$
Selected model

- Model 5: \(K \), different \(\phi \), \(\text{Diag}(\Psi) \)
- Parameters: \(K = 15 \), \(\phi = 5 \), \(\text{Diag}(\Psi) = 5 \)

Focus on spatial cross-covariance matrix \(K \) (for brevity).

Posterior inference of cor(\(K \)), e.g., 50 (2.5, 97.5) percentiles:

<table>
<thead>
<tr>
<th></th>
<th>BE</th>
<th>EH</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EH</td>
<td>0.16 (0.13, 0.21)</td>
<td>1</td>
<td>…</td>
</tr>
<tr>
<td>RM</td>
<td>-0.20 (-0.23, -0.15)</td>
<td>0.45 (0.26, 0.66)</td>
<td>…</td>
</tr>
<tr>
<td>SM</td>
<td>-0.20 (-0.22, -0.17)</td>
<td>-0.12 (-0.16, -0.09)</td>
<td>…</td>
</tr>
<tr>
<td>YB</td>
<td>0.07 (0.04, 0.08)</td>
<td>0.22 (0.20, 0.25)</td>
<td>…</td>
</tr>
</tbody>
</table>

These relationships expressed in mapped random spatial effects, \(w \).
Selected model

- Model 5: K, different ϕ, $Diag(\Psi)$
- Parameters: $K = 15$, $\phi = 5$, $Diag(\Psi) = 5$

Focus on spatial cross-covariance matrix K (for brevity).

Posterior inference of $\text{cor}(K)$, e.g., 50 (2.5, 97.5) percentiles:

<table>
<thead>
<tr>
<th></th>
<th>BE</th>
<th>EH</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EH</td>
<td>0.16 (0.13, 0.21)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RM</td>
<td>-0.20 (-0.23, -0.15)</td>
<td>0.45 (0.26, 0.66)</td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>-0.20 (-0.22, -0.17)</td>
<td>-0.12 (-0.16, -0.09)</td>
<td></td>
</tr>
<tr>
<td>YB</td>
<td>0.07 (0.04, 0.08)</td>
<td>0.22 (0.20, 0.25)</td>
<td></td>
</tr>
</tbody>
</table>

These relationships expressed in mapped random spatial effects, w.
$E[\mathbf{w} \mid \text{Data}]$
$E[\mathbf{w} | \text{Data}]$

Inventory plots

<table>
<thead>
<tr>
<th>BE</th>
<th>RM</th>
<th>SM</th>
<th>YB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$E[\mathbf{w}^* | \text{Data}]$

Validation plots

<table>
<thead>
<tr>
<th>BE</th>
<th>RM</th>
<th>SM</th>
<th>YB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[E[\mathbf{Y}^* \mid \text{Data}] \]
\[E[Y^* \mid Data] \quad P(2.5 < Y^* < 97.5 \mid Data) \]
Summary

Proposed Bayesian hierarchical spatial methodology:
- Partition sources of uncertainty
 - Provides hypothesis testing
 - Reveal spatial patterns and missing covariates
Summary

Proposed Bayesian hierarchical spatial methodology:
- Partition sources of uncertainty
 - Provides hypothesis testing
 - Reveal spatial patterns and missing covariates
- Allow flexible inference
 - Access parameters’ posterior distribution
 - Access posterior predictive distribution

Provide consistent prediction of multiple variables
Maintains spatial and non-spatial association
Extendable model template:
- Cluster plot sample design – multiresolution models
- Non-continuous response – general linear models
- Obs. over time and space – spatiotemporal models
Summary

Proposed Bayesian hierarchical spatial methodology:
- Partition sources of uncertainty
 - Provides hypothesis testing
 - Reveal spatial patterns and missing covariates
- Allow flexible inference
 - Access parameters’ posterior distribution
 - Access posterior predictive distribution
- Provide consistent prediction of multiple variables
 - Maintains spatial and non-spatial association
Summary

Proposed Bayesian hierarchical spatial methodology:
- Partition sources of uncertainty
 - Provides hypothesis testing
 - Reveal spatial patterns and missing covariates
- Allow flexible inference
 - Access parameters’ posterior distribution
 - Access posterior predictive distribution
- Provide consistent prediction of multiple variables
 - Maintains spatial and non-spatial association

Extendable model template:
- Cluster plot sample design – multiresolution models
- Non-continuous response – general linear models
- Obs. over time and space – spatiotemporal models