The Big n issue

Univariate spatial regression

\[Y = X\beta + w + \epsilon, \]

- Estimation involves $\sigma^2R(\phi) + \tau^2I$, which is $n \times n$.
- Matrix computations occur in each MCMC iteration.
- Known as the “Big-N problem” in geostatistics.
- Approach: Use a model $Y = X\beta + Zw' + \epsilon$. But what Z?

Knots: A “Knotty” problem??

- Knot selection: Regular grid? More knots near locations we have sampled more?
- Formal spatial design paradigm: maximize information metrics (Zhu and Stein, 2006; Diggle & Lophaven, 2006)
- Geometric considerations: space-filling designs (Royle & Nychka, 1998); various clustering algorithms
- Compare performance of estimation of range and smoothness by varying knot size.
- Stein (2007, 2008): method may not work for fine-scale spatial data
- Still a popular choice – seamlessly adapts to multivariate and spatiotemporal settings.

A rectified predictive process is defined as

\[\tilde{w}_i(s) = \bar{w}(s) + \tilde{\tau}(s), \]

where

\[\tilde{\tau}(s) \overset{\text{iid}}{\sim} N(0, \sigma^2_\tau^2 (1 - R(s, \phi)^2) R^{-1}(\phi) R(s, \phi)). \]

Maximum likelihood estimates of τ^2:

<table>
<thead>
<tr>
<th># of Knots</th>
<th>Predictive Process</th>
<th>Rectified Predictive Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1.56941</td>
<td>1.00786</td>
</tr>
<tr>
<td>36</td>
<td>1.65688</td>
<td>1.15386</td>
</tr>
<tr>
<td>64</td>
<td>1.45169</td>
<td>1.08358</td>
</tr>
<tr>
<td>100</td>
<td>1.37916</td>
<td>1.09657</td>
</tr>
<tr>
<td>225</td>
<td>1.27391</td>
<td>1.08985</td>
</tr>
<tr>
<td>400</td>
<td>1.22429</td>
<td>1.09489</td>
</tr>
<tr>
<td>625</td>
<td>1.21127</td>
<td>1.09998</td>
</tr>
<tr>
<td>exact</td>
<td>1.14414</td>
<td>1.14414</td>
</tr>
</tbody>
</table>

Knots: A “Knotty” problem??

- Consider “knots”: $\mathcal{S}^* = \{s^*_1, \ldots, s^*_n\}$ with $n^* << n$.
- Let $w^* = \{w(s^*_i)\}_{i=1}^{n^*}$.
- $Z(\phi) = \{\text{cov}(w(s_i), w(s^*_i))\}/\{\text{var}(w^*)\}^{-1}$ is $n \times n^*$.

Fitting requires only $n^* \times n^*$ matrix computations ($n^* << n$).

Key attraction: The above arises as a process model:

\[\tilde{w}(s) \sim GP(0, \sigma^2_w \tilde{\rho}(\cdot; \phi)) \]

\[\tilde{\rho}(s_1, s_2; \phi) = \text{cov}(w(s_1), w^*)/\text{var}(w^*)^{-1}\text{cov}(w^*, w(s_2)) \]

Predictive process regression model

\[Y = X\beta + Z(\phi)w^* + \epsilon, \]

Comparisons: Unrectified VS Rectified

Big N problem

Predictive Process Models

Selection of knots

Introduction

Comparisons: Unrectified VS Rectified

Big N problem

Selection of knots

Big N problem

Selection of knots

Big N problem

Comparison of Unrectified VS Rectified

Hierarchical Modelling for Large Spatial Datasets

Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis

February 15, 2011
Illustration from:

Univariate random effects models

Modeling genetic variation in Scots pine (Pinus sylvestris L.), long-term progeny study in northern Sweden.

Quantitative genetics: studies the inheritance of polygenic traits, focusing upon estimation of additive genetic variance, σ^2_a, and the heritability $h^2 = \frac{\sigma^2_a}{\sigma^2_{Tot}}$, where the σ^2_{Tot} represents the total genetic and unexplained variation.

A high heritability, h^2, should result in a larger selection response (i.e., a higher probability for genetic gain in future generations).

Genetic effects model:

$$Y_i = \mathbf{x}_i^T \beta + a_i + d_i + \epsilon_i,$$

- $a = [a_i]_{n=1}^n \sim MVN(\mathbf{0}, \sigma^2_a \mathbf{A})$
- $d = [d_i]_{n=1}^n \sim MVN(\mathbf{0}, \sigma^2_d \mathbf{D})$
- $\epsilon = [\epsilon_i]_{n=1}^n \sim N(\mathbf{0}, \tau^2 \mathbf{I}_n)$

A and D are fixed relationship matrices (See e.g., Henderson, 1985; Lynch and Walsh, 1998)

Note, genetic variance is further partitioned into additive and the non-additive dominance component σ^2_d

Genetic effect model results

Parameter credible intervals, 50% (2.5%, 97.5%) for the non-spatial models Scots pine trial.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>72.53 (69.66, 75.08)</td>
<td>72.27 (70.04, 74.57)</td>
<td></td>
</tr>
<tr>
<td>σ^2_a</td>
<td>31.94 (18.30, 49.85)</td>
<td>25.23 (14.12, 43.96)</td>
<td></td>
</tr>
<tr>
<td>σ^2_d</td>
<td>$-$</td>
<td>22.37 (11.24, 40.11)</td>
<td></td>
</tr>
<tr>
<td>τ^2</td>
<td>133.60 (121.18, 144.70)</td>
<td>116.14 (100.51, 127.76)</td>
<td></td>
</tr>
<tr>
<td>h^2</td>
<td>0.19 (0.12, 0.28)</td>
<td>0.15 (0.09, 0.26)</td>
<td></td>
</tr>
</tbody>
</table>
Spatial model for genetic trials:

\[Y(s_i) = x^T(s_i)\beta + a_i + d_i + w(s_i) + \epsilon_i, \]

- \(a_i \sim MVN(0,\sigma_a^2A) \)
- \(d_i \sim MVN(0,\sigma_d^2D) \)
- \(w = [w(s_i)]_{i=1}^{n} \sim MVN(0,\sigma_w^2C(\theta)) \)
- \(\epsilon = [\epsilon_i]_{i=1}^{n} \sim N(0,\tau^2I_n) \)

Tools used to estimate parameters:
- Markov chain Monte Carlo (MCMC) - iterative
 - Gibbs sampler (a, d, w)
 - Metropolis-Hastings and Slice samplers (\theta)

Here MCMC is computationally infeasible because of Big-N!

Trick to sample genetic effects:

Gibbs draw for random effects, e.g.,

\[a_i | \cdot \sim MVN(\mu_{a_i},\Sigma_{a_i}) \]

where calculating \(\Sigma_{a_i} = \frac{1}{\sigma_a^2}A^{-1} + \frac{1}{\tau^2}I_n \) is computationally expensive!

However A and D are known, so use initial spectral decomposition i.e., \(A^{-1} = P^{T}\Lambda^{-1}P \).

Thus, \(\Sigma_{a_i} = P^{T}\left(\frac{1}{\sigma_a^2}\Lambda^{-1} + \frac{1}{\tau^2}I_n\right)^{-1}P \) to achieve computational benefits.

Unfortunately, this trick does not work for w. Rather, we proposed the knot-based predictive process.

Corresponding predictive process model:

\[Y(s_i) = x^T(s_i)\beta + a_i + d_i + \tilde{w}(s_i) + \epsilon_i, \]

- \(\tilde{w}(s_i) = c(s_i;\theta)^TC(\theta)^{-1}w^* \)

where, \(w^* = [w(s_i)]_{i=1}^{n} \sim MVN(0,C^*(\theta)) \) and \(C^*(\theta) = \{C(s_i; s_j; \theta)\}_{i,j=1}^{n} \)

\(\tilde{w} \) can accommodate complex spatial dependence structures, e.g., anisotropic Matérn correlation function:

\[\rho(s_i, s_j; \theta) = \left(1 + \sqrt{\nu}d_{ij}\right)^{-\nu} \kappa_{\nu}(\sqrt{\nu}d_{ij}), \]

where \(d_{ij} = ||s_i - s_j|| \) and \(\Sigma = G(\psi)\Lambda^2G^{T}(\psi) \). Thus, \(\theta = (\nu,\psi,\Lambda) \).

Previous approaches to accommodating residual spatial dependence:

- Manipulate the mean function
 - constructing covariates using residuals from neighboring units (see e.g., Wilkinson et al., 1983; Besag and Kempton, 1986; Williams, 1986)
- Geostatistical
 - spatial process formed \(AR(1)_\text{col} \otimes AR(1)_\text{row} \) (Martin, 1990; Cullis et al., 1998)
 - classical geostatistical method (Zimmerman and Harville, 1991)

All are computationally feasible, but ad hoc and/or restrictive from a modeling perspective.

So, \(\epsilon \sim N(0,\tau^2I_n) \). Consider a spatial model.
Genetic + spatial effects models

- Candidate spatial models (i.e., specifications of $C_\ast(\theta)$):
 - AR(1)$_{col}$ \otimes AR(1)$_{row}$
 - isotropic Matérn
 - anisotropic Matérn
- Each model evaluated using 64, 144, and 256 knot grids.
- Model choice using Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002)

Each model evaluated using 64, 144, and 256 knot grids.
Model choice using Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002)

Table: Model comparisons using the DIC criterion for the Scots pine dataset.

<table>
<thead>
<tr>
<th>Model</th>
<th>P_D</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-spatial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add.</td>
<td>306.40</td>
<td>15,618.09</td>
</tr>
<tr>
<td>Add. Dom.</td>
<td>555.92</td>
<td>15,547.85</td>
</tr>
<tr>
<td>Spatial Isotropic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 Knots</td>
<td>639.77</td>
<td>14,877.51</td>
</tr>
<tr>
<td>144 Knots</td>
<td>739.61</td>
<td>14,814.89</td>
</tr>
<tr>
<td>256 Knots</td>
<td>802.29</td>
<td>14,771.64</td>
</tr>
<tr>
<td>Spatial Anisotropic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 Knots</td>
<td>678.82</td>
<td>14,884.13</td>
</tr>
<tr>
<td>144 Knots</td>
<td>748.89</td>
<td>14,823.90</td>
</tr>
<tr>
<td>256 Knots</td>
<td>806.46</td>
<td>14,781.53</td>
</tr>
</tbody>
</table>

Parameter credible intervals, 50% (2.5%, 97.5%) for the isotropic Matérn and 64 and 256 knots Scots pine trial.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>64 Knots</th>
<th>256 Knots</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>72.53 (69.00, 76.05)</td>
<td>74.21 (69.66, 79.66)</td>
</tr>
<tr>
<td>σ^2_a</td>
<td>26.87 (17.14, 41.82)</td>
<td>33.03 (18.19, 53.69)</td>
</tr>
<tr>
<td>σ^2_d</td>
<td>11.69 (6.00, 34.27)</td>
<td>13.96 (7.65, 27.05)</td>
</tr>
<tr>
<td>σ^2_w</td>
<td>41.84 (23.71, 73.34)</td>
<td>50.36 (30.24, 88.10)</td>
</tr>
<tr>
<td>τ^2</td>
<td>89.55 (72.11, 99.65)</td>
<td>80.75 (67.90, 96.16)</td>
</tr>
<tr>
<td>ν</td>
<td>0.83 (0.31, 1.46)</td>
<td>0.47 (0.26, 1.28)</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.05 (0.02, 0.09)</td>
<td>0.04 (0.02, 0.09)</td>
</tr>
<tr>
<td>Eff. Range</td>
<td>71.00 (44.66, 127.93)</td>
<td>74.59 (45.22, 129.83)</td>
</tr>
<tr>
<td>h^2</td>
<td>0.21 (0.13, 0.31)</td>
<td>0.25 (0.15, 0.39)</td>
</tr>
</tbody>
</table>

- Decrease in τ^2 due to removal of spatial variation, results in increase in h^2 (i.e., ~ 0.25 vs. ~ 0.15 with confounding).

Summary

Challenge - to meet modeling needs:

- ensure computationally feasible
 - reduce algorithmic complexity = cheap tricks (e.g., spectral decomp. of A prior to MCMC)
 - reduce dimensionality = predictive process
- maintain richness and flexibility
 - focus on the model **not** how to estimate the parameters = embrace new tools (MCMC) for estimating highly flexible hierarchical models
- truly acknowledge sources of uncertainty
 - propagate uncertainty through hierarchical structures (e.g., recognize uncertainty in $C(\theta)$)

Predictive process – balance model richness with computational feasibility (e.g., $4,970 \times 4,970$ vs. 64×64).